Realistic Simulated MRI and SPECT Databases

  • Berengere Aubert-Broche
  • Christophe Grova
  • Anthonin Reilhac
  • Alan C. Evans
  • D. Louis Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods.

Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy.

We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity non-uniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.


Scatter Correction Normalize Mutual Information Mesial Temporal Lobe Epilepsy Normal Perfusion Anatomical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kwan, R., Evans, A.C., Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18(11), 1085–1097 (1999)CrossRefGoogle Scholar
  2. 2.
    Buvat, I., Castiglioni, I.: Monte carlo simulations in SPET and PET. Quarterly J. Nucl. Med. 46, 48–59 (2002)Google Scholar
  3. 3.
    Reilhac, A., Batan, G., Michel, C., et al.: PET-SORTEO: validation and development of database of simulated PET volumes. IEEE Trans. Nucl. Sci. 52(5), 1321–1328 (2005)CrossRefGoogle Scholar
  4. 4.
    Zubal, I.G., Harrell, C.R., Smith, E.O., et al.: Computerized three-dimensional segmented human anatomy. Med. Phys. 21(2), 299–302 (1994)CrossRefGoogle Scholar
  5. 5.
    Collins, D.L., Zijdenbos, A.P., Kollokian, V., et al.: Design and Construction of a Realistic Digital Brain Phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)CrossRefGoogle Scholar
  6. 6.
    Grova, C., Jannin, P., Biraben, A., et al.: A methodology for generating normal and pathological brain perfusion spect images for evaluation of mri/spect fusion methods: application in epilepsy. Phys. Med. Biol. 48(24), 4023–4043 (2003)CrossRefGoogle Scholar
  7. 7.
    Vik, T., Heitz, F., Namer, I., Armspach, J.-P.: On the modeling, construction, and evaluation of a probabilistic atlas of brain perfusion. Neuroimage 24(4), 1088–1098 (2005)CrossRefGoogle Scholar
  8. 8.
    Weder, B.J., Schindler, K., Loher, T.J., et al.: Brain areas involved in medial temporal lobe seizures: A principal component analysis of ictal spect data. Human Brain Mapp. (2005)Google Scholar
  9. 9.
    Grova, C., Jannin, P., Buvat, I., et al.: From anatomic standardization analysis of perfusion spect data to perfusion pattern modeling: evidence of functional networks in healthy subjects and temporal lobe epilepsy patients. Acad. Radiol. 12(5), 554–565 (2005)CrossRefGoogle Scholar
  10. 10.
    Aubert-Broche, B., Collins, D.L., Evans, A.C.: A new improved version of the realistic digital brain phantom. Neuroimage (in press, 2006)Google Scholar
  11. 11.
    Sled, J.G., Zijdenbos, A.P., Evans, A.: A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)CrossRefGoogle Scholar
  12. 12.
    Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C.: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18(2), 192–205 (1994)CrossRefGoogle Scholar
  13. 13.
    Evans, A.C., Collins, D.L., Mills, S.R., et al.: 3D statistical neuroanatomical models from 305 MRI volumes. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA, pp. 1813–1817 (October 1993)Google Scholar
  14. 14.
    Collins, D.L., Zijdenbos, A.P., Barre, W.F.C., Evans, A.C.: ANIMAL+INSECT: Inproved cortical structure segmentation. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 210–223. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Harrison, R.L., Vannoy, S.D., Haynor, D.R., et al.: Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography. In: IEEE Nucl. Sci. Symposium, vol. 2, pp. 1154–1158 (1993)Google Scholar
  16. 16.
    Grova, C., Jannin, P., Buvat, I., et al.: Evaluation of registration of ictal SPECT/MRI data using statistical similarity methods. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 687–695. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Knops, Z.F., Maintz, J.B., Viergever, M.A., Pluim, J.P.: Normalized mutual information based registration using k-means clustering and shading correction. Med. Image Anal. (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Berengere Aubert-Broche
    • 1
  • Christophe Grova
    • 1
  • Anthonin Reilhac
    • 1
    • 2
  • Alan C. Evans
    • 1
  • D. Louis Collins
    • 1
  1. 1.Montreal Neurological InstituteMcGill UniversityMontrealCanada
  2. 2.CERMEPLyonFrance

Personalised recommendations