Towards a Statistical Atlas of Cardiac Fiber Structure

  • Jean-Marc Peyrat
  • Maxime Sermesant
  • Xavier Pennec
  • Hervé Delingette
  • Chenyang Xu
  • Elliot McVeigh
  • Nicholas Ayache
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


We propose here a framework to build a statistical atlas of diffusion tensors of canine hearts. The anatomical images of seven hearts are first non-rigidly registered in the same reference frame and their associated diffusion tensors are then transformed with a method that preserves the cardiac laminar sheets. In this referential frame, the mean tensor and its covariance matrix are computed based on the Log-Euclidean framework. With this method, we can produce a smooth mean tensor field that is suited for fiber tracking algorithms or the electromechanical modeling of the heart. In addition, by examining the covariance matrix at each voxel it is possible to assess the variability of the cardiac fiber directions and of the orientations of laminar sheets. The results show a strong coherence of the diffusion tensors and the fiber orientations among a population of seven normal canine hearts.


Canine Heart Electromechanical Modeling Laminar Sheet Primary Eigenvector Statistical Atlas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ayache, N. (ed.): Computational Models for the Human Body. Handbook of Numerical Analysis. Elsevier, Amsterdam (2004)MATHGoogle Scholar
  2. 2.
    Azar, A., et al.: An interactive Intensity- and Feature-Based Non-Rigid Registration Framework for 3D Medical Images. In: Proc. of ISBI 2006 (2006)Google Scholar
  3. 3.
    Alexander, D.C., et al.: Spatial Transformations of Diffusion Tensor Magnetic Resonance Images. IEEE TMI 20(11), 1131–1139 (2001)Google Scholar
  4. 4.
    Jones, D.K., et al.: Spatial normalization and Averaging of Diffusion Tensor MRI Data Sets. NeuroImage 17, 592–617 (2002)CrossRefGoogle Scholar
  5. 5.
    LeGrice, I.J., et al.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J. Physiol. (1995)Google Scholar
  6. 6.
    Peyrat, J.M., et al.: Towards a statistical atlas of cardiac fiber architecture. Research Report 5906, INRIA (May 2006)Google Scholar
  7. 7.
    Sermesant, M., et al.: Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging. Med. Image Anal. 5(9), 467–480 (2005)CrossRefGoogle Scholar
  8. 8.
    Helm, P., et al.: Ex Vivo 3D Diffusion Tensor Imaging and Quantification of Cardiac Laminar Structure. Magn. Reson. Med. 54(4), 850–859 (2005)CrossRefGoogle Scholar
  9. 9.
    Arts, T., et al.: Relating Myocardial Laminar Architecture to Shear Strain and Muscle Fiber Orientation. Am. J. Physiol. 280, H2222–H2229 (2001)Google Scholar
  10. 10.
    Arsigny, V., et al.: Fast and Simple Calculus on Tensors in the Log-Euclidean Framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Pennec, X., et al.: A Riemannian Framework for Tensor Computing. IJCV (2006)Google Scholar
  12. 12.
    Cao, Y., et al.: Large Deformation Diffeomorphic Metric Mapping of Fiber Orientations. In: Proc. of ICCV 2005, pp. 1379–1386 (2005)Google Scholar
  13. 13.
    Helm, P.: A Novel Technique for Quantifying Variability of Cardiac Anatomy: Application to the Dyssynchronous Failing Heart. PhD thesis, JHU (2005)Google Scholar
  14. 14.
    Sachse, F. (ed.): Computational Cardiology - Modeling of Anatomy, Electrophysiology, and Mechanics. LNCS. Springer, Heidelberg (2004)MATHGoogle Scholar
  15. 15.
    Scollan, D.F.: Reconstructing the Heart: Development and Application of Biophysically-based Electrical Models of Propagation in Ventricular Myocardium Reconstructed from Diffusion Tensor MRI. PhD thesis, JHU (2002)Google Scholar
  16. 16.
    Sierra, R.: Nonrigid Registration of Diffusion Tensor Images. Master’s thesis, ETH Zurich (March 2001)Google Scholar
  17. 17.
    Turkowski, K.: Graphics Gems. In: Properties of Surface-Normal Transformations. Academic Press, Inc., London (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Marc Peyrat
    • 1
  • Maxime Sermesant
    • 1
  • Xavier Pennec
    • 1
  • Hervé Delingette
    • 1
  • Chenyang Xu
    • 2
  • Elliot McVeigh
    • 3
  • Nicholas Ayache
    • 1
  1. 1.Asclepios Research ProjectINRIASophia AntipolisFrance
  2. 2.Siemens Corporate ResearchPrincetonUSA
  3. 3.Laboratory of Cardiac EnergeticsNational Heart Lung and Blood Institute, National Institute of HealthBethesdaUSA

Personalised recommendations