Advertisement

Feasibility of Patient Specific Aortic Blood Flow CFD Simulation

  • Johan Svensson
  • Roland Gårdhagen
  • Einar Heiberg
  • Tino Ebbers
  • Dan Loyd
  • Toste Länne
  • Matts Karlsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)

Abstract

Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset segmentation followed by meshing of the geometrical model and CFD setup to perform the simulations follwed by the actual simulations. The computational results agree well with the measured data.

Keywords

Wall Shear Stress Abdominal Aortic Aneurysm Computational Fluid Dynamic Simulation Magnetic Resonance Imaging Measurement Human Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Berenson, G., Srinivas, S., Bao, W., Newman III, W., Tracy, R., Wattingney, W.: Association between multiple cardiovascular risk factors and atherosclerosis in childeren and young adults. The New England Journal of Medicine 338, 1650–1656 (1998)CrossRefGoogle Scholar
  2. 2.
    Humprey, J.: Cardiovascular Solid Mechanics. Springer, Heidelberg (2002)Google Scholar
  3. 3.
    Caro, C., Fitz-Gerald, J., Schroter, R.: Arterial wall shear: Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenisis. Proceedings of Royal Society in London, B:177, 109–159 (1971)Google Scholar
  4. 4.
    Fry, D.: Acute vascular endothelial changes associated with increased blood velocity gradient. Circular Research 22, 165–197 (1968)Google Scholar
  5. 5.
    Wu, S., Ringgaard, S., Oyre, S., Hansen, M., Rasmus, S., Pedersen, E.: Wall shear rates differ between the normal carotid, femoral, and bracial arteries: An in vivo MRI study. Journal of Magnetic Resonance Imaging 19, 188–193 (2004)CrossRefGoogle Scholar
  6. 6.
    Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Computing and Visualization in Science 2, 163–197 (2000)MATHCrossRefGoogle Scholar
  7. 7.
    Cebral, J., Castro, M., Soto, O., Löhner, R., Alperin, N.: Blood-flow models of the circle of willis from magnetic resonance data. Journal of Engineering Mathematics 47, 369–386 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Finol, E., Amon, C.: Flow-induced wall shear stress in abdominal aortic aneurysms: Part i - steady flow hemodynamics. Computer Methods in Biomechanics and Biomedical Engineering 5, 309–318 (2002)CrossRefGoogle Scholar
  9. 9.
    Finol, E., Amon, C.: Flow-induced wall shear stress in abdominal aortic aneurysms: Part ii - pulsatile flow hemodynamics. Computer Methods in Biomechanics and Biomedical Engineering 5, 319–328 (2002)CrossRefGoogle Scholar
  10. 10.
    Steinman, D., Thomas, J., Ladak, H., Milner, J., Rutt, B., Spence, J.: Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and mri. Magnetic Resonance in Medicine 47, 149–159 (2002)CrossRefGoogle Scholar
  11. 11.
    Glor, F., Westenberg, J., Vierendeels, J., Danilouchkine, M., Verdonck, P.: Validation of the coupling of magnetic resonance imaging velocity measurement with computational fluid dynamics in an U bend. Artificial Organs 27, 622–635 (2002)CrossRefGoogle Scholar
  12. 12.
    Ku, J., Elkins, C., Taylor, C.: Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Annals of Biomedical Engineering 33, 257–269 (2005)CrossRefGoogle Scholar
  13. 13.
    Leuprecht, A., Perktold, K., Kozerke, S., Boesiger, P.: Combined cfd and mri study of blood flow in a human ascending aorta model. Biorheology 39, 425–429 (2002)Google Scholar
  14. 14.
    Friedman, M., Deters, O., Mark, F., Bargeron, C., Hutchins, G.: Arterial geometry affects hemodynamics. A potential risk factor for atherosclerosis. Atherosclerosis 46, 225–231 (1983)Google Scholar
  15. 15.
    Svensson, J., Gårdhagen, R., Karlsson, M.: Geometrical considerations in patient specific models of a human aorta with stenosis and aneurysm. In: Computational Fluid Dynamics 2004 Proceedings of the Third International Conference on Computational Fluid Dynamics, ICCFD3, Toronto, July 12-16 (2004) ISBN: 3-540-31800-3Google Scholar
  16. 16.
    Svensson, J., Gårdhagen, R., Karlsson, M.: Assesment of geometrical influence on wss estimation in the human aorta. WSEAS Transactions on Fluid Mechanics (accepted, 2006)Google Scholar
  17. 17.
    Nilsson, B., Heyden, A.: A fast algorithm for level set-like active contours. Pattern Recognition Letters 24, 1331–1337 (2003)MATHCrossRefGoogle Scholar
  18. 18.
    Sethian, J.A.: Level set methods and fast marching methods. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Johan Svensson
    • 1
    • 5
  • Roland Gårdhagen
    • 1
    • 5
  • Einar Heiberg
    • 2
  • Tino Ebbers
    • 3
    • 5
  • Dan Loyd
    • 1
  • Toste Länne
    • 3
    • 5
  • Matts Karlsson
    • 4
    • 5
  1. 1.Department of Mechanical EngineeringLinköping UniversitySweden
  2. 2.Department of Clinical PhysiologyLund UniversitySweden
  3. 3.Department of Medicine and CareLinköping UniversitySweden
  4. 4.Department of Biomedical EngineeringLinköping UniversitySweden
  5. 5.Center for Medical Image Science and Visualization (CMIV)Linköping UniversitySweden

Personalised recommendations