Limits on Estimating the Width of Thin Tubular Structures in 3D Images

  • Stefan Wörz
  • Karl Rohr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


This work studies limits on estimating the width of thin tubular structures in 3D images. Based on nonlinear estimation theory we analyze the minimal stochastic error of estimating the width. Given a 3D analytic model of the image intensities of tubular structures, we derive a closed-form expression for the Cramér-Rao bound of the width estimate under image noise. We use the derived lower bound as a benchmark and compare it with three previously proposed accuracy limits for vessel width estimation. Moreover, by experimental investigations we demonstrate that the derived lower bound can be achieved by fitting a 3D parametric intensity model directly to the image data.


Magnetic Resonance Angiography Tubular Structure Magnetic Resonance Angiography Image Vessel Width Thin Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kirbas, C., Quek, F.: A Review of Vessel Extraction Techniques and Algorithms. ACM Computing Surveys 36, 81–121 (2004)CrossRefGoogle Scholar
  2. 2.
    Hoogeveen, R., Bakker, C., Viergever, M.: Limits to the Accuracy of Vessel Diameter Measurement in MR Angiography. J. of Magnetic Resonance Imaging 8, 1228–1235 (1998)CrossRefGoogle Scholar
  3. 3.
    Sato, Y., Yamamoto, S., Tamura, S.: Accurate Quantification of Small-Diameter Tubular Structures in Isotropic CT Volume Data Based on Multiscale Line Filter Responses. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 508–515. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Wörz, S., Rohr, K.: A New 3D Parametric Intensity Model for Accurate Segmentation and Quantification of Human Vessels. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 491–499. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Rohr, K.: Fundamental Limits in 3D Landmark Localization. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 286–298. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Sonka, M., Reddy, G., Winniford, M., Collins, S.: Adaptive Approach to Accurate Analysis of Small-Diameter Vessels in Cineangiograms. IEEE Trans. on Medical Imaging 16(1), 87–95 (1997)CrossRefGoogle Scholar
  7. 7.
    Dougherty, G., Newmann, D.: Measurement of thickness and density of thin structures by computed tomography: A simulation study. Medical Physics 26, 1341–1348 (1999)CrossRefGoogle Scholar
  8. 8.
    Sato, Y., Tanaka, H., Nishii, T., Nakanishi, K., Sugano, N., Kubota, T., Nakamura, H., Yoshikawa, H., Ochi, T., Tamura, S.: Limits on the Accuracy of 3-D Thickness Measurements in Magnetic Resonance Images – Effects of Voxel Anisotropy. IEEE Trans. on Medical Imaging 22, 1076–1088 (2003)CrossRefGoogle Scholar
  9. 9.
    Bouma, H., Vilanova, A., van Vliet, L., Gerritsen, F.: Correction for the Dislocation of Curved Surfaces Caused by the PSF in 2D and 3D CT Images. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 1501–1507 (2005)CrossRefGoogle Scholar
  10. 10.
    van Trees, H.: Detection, Estimation, and Modulation Theory, Part I. John Wiley and Sons, New York (1968)MATHGoogle Scholar
  11. 11.
    Abramowitz, M., Stegun, I.: Pocketbook of Mathematical Functions. Verlag Harri Deutsch, Thun und Frankfurt/Main (1984)MATHGoogle Scholar
  12. 12.
    Hoogeveen, R., Bakker, C., Viergever, M.: MR Phase-Contrast Flow Measurement With Limited Spatial Resolution in Small Vessels: Value of Model-Based Image Analysis. J. of Magnetic Resonance in Medicine 41, 520–528 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Wörz
    • 1
  • Karl Rohr
    • 1
  1. 1.Dept. Bioinformatics and Functional Genomics, Biomedical Computer Vision GroupUniversity of Heidelberg, IPMB, and DKFZ HeidelbergHeidelbergGermany

Personalised recommendations