Automatic Segmentation of Jaw Tissues in CT Using Active Appearance Models and Semi-automatic Landmarking

  • Sylvia Rueda
  • José Antonio Gil
  • Raphaël Pichery
  • Mariano Alcañiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


Preoperative planning systems are commonly used for oral implant surgery. One of the objectives is to determine if the quantity and quality of bone is sufficient to sustain an implant while avoiding critical anatomic structures. We aim to automate the segmentation of jaw tissues on CT images: cortical bone, trabecular core and especially the mandibular canal containing the dental nerve. This nerve must be avoided during implant surgery to prevent lip numbness. Previous work in this field used thresholds or filters and needed manual initialization. An automated system based on the use of Active Appearance Models (AAMs) is proposed. Our contribution is a completely automated segmentation of tissues and a semi-automatic landmarking process necessary to create the AAM model. The AAM is trained using 215 images and tested with a leave-4-out scheme. Results obtained show an initialization error of 3.25% and a mean error of 1.63mm for the cortical bone, 2.90mm for the trabecular core, 4.76mm for the mandibular canal and 3.40mm for the dental nerve.


Cortical Bone Automatic Segmentation Mandibular Canal Active Appearance Model Point Distribution Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Moreno, A., Bloch, I., Dutreuil, J., Deval, M.: 3D Reconstruction from Radiologic Projections applied to Dental Implantology and to oral-facial surgery, ENST Report (2004)Google Scholar
  2. 2.
    Verstreken, K.: An Image-Guided Planning System for Endosseous Oral Implants. IEEE Transactions on Medical Imaging 17, 5 (1998)CrossRefGoogle Scholar
  3. 3.
    Fütterling, F., Klein, R., Straber, W., Weber, H.: Automated Finite Element Modeling of a Human Mandible with Dental Implants. In: 6th International Conference in Central Europe on Computer Graphics and Visualization (1998)Google Scholar
  4. 4.
    Stein, W., Hassfeld, S., Muhling, J.: Tracing of thin tubular structures in computer tomographic data. Computer Aided Surgery 3, 83–88 (1998)CrossRefGoogle Scholar
  5. 5.
    DeBruijne, B.M., Van Ginneken, B., Niessen, W.J., Viergever, M.A., Wiro, J.N.: Adapting Active Shape Models for 3D Segmentation of Tubular Structures in Medical Images. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 136–147. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Cootes, T.F., Taylor, C.J.: Statistical Models of Appearance for Computer Vision, Report (2004)Google Scholar
  8. 8.
    Cootes, T.F., Taylor, C.J.: Statistical models of appearance for medical image analysis and computer vision. In: Proc. SPIE Medical Imaging (2001)Google Scholar
  9. 9.
    Stegmann, M.B.: Active Appearance Models - Theory, Extensions & Cases, Master Thesis IMM-EKS-2000-25 (2000)Google Scholar
  10. 10.
    Stegmann, M.B., Ersboll, B.K., Larsen, R.: FAME - a flexible appearance modelling environment. IEEE Transactions on Medical Imaging (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sylvia Rueda
    • 1
  • José Antonio Gil
    • 1
  • Raphaël Pichery
    • 2
  • Mariano Alcañiz
    • 1
  1. 1.Medical Image Computing Laboratory (MedICLab)Universidad Politécnica de Valencia, UPV/ETSIAValenciaSpain
  2. 2.Ecole Supérieure d’Ingénieurs de LuminyMarseilleFrance

Personalised recommendations