Anisotropy Creases Delineate White Matter Structure in Diffusion Tensor MRI

  • Gordon Kindlmann
  • Xavier Tricoche
  • Carl-Fredrik Westin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


Current methods for extracting models of white matter architecture from diffusion tensor MRI are generally based on fiber tractography. For some purposes a compelling alternative may be found in analyzing the first and second derivatives of diffusion anisotropy. Anisotropy creases are ridges and valleys of locally extremal anisotropy, where the gradient of anisotropy is orthogonal to one or more eigenvectors of its Hessian. We propose that anisotropy creases provide a basis for extracting a skeleton of white matter pathways, in that ridges of anisotropy coincide with interiors of fiber tracts, and valleys of anisotropy coincide with the interfaces between adjacent but distinctly oriented tracts. We describe a crease extraction algorithm that generates high-quality polygonal models of crease surfaces, then demonstrate the method on a measured diffusion tensor dataset, and visualize the result in combination with tractography to confirm its anatomic relevance.


Fractional Anisotropy White Matter Pathway Superior Longitudinal Fasciculus Middle Cerebellar Peduncle Medial Lemniscus 


  1. 1.
    Basser, P., Jones, D.: Diffusion-tensor MRI: Theory, experimental design and data analysis - A technical review. Nuc. Mag. Res. in Biomed. 15, 456–467 (2002)Google Scholar
  2. 2.
    Mori, S., Zijl, P.V.: Fiber tracking: Principles and strategies - A technical review. Nuc. Mag. Res. in Biomed. 15, 468–480 (2002)Google Scholar
  3. 3.
    Corouge, I., Fletcher, P., Joshi, S., Gilmore, J., Gerig, G.: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 131–139. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Moberts, B., Vilanova, A., van Wijk, J.: Evaluation of fiber clustering methods for diffusion tensor imaging. In: Proceedings of IEEE Visualization 2005, pp. 65–72 (2005)Google Scholar
  5. 5.
    Basser, P.: Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. Nuc. Mag. Res. in Biomed. 8, 333–344 (1995)Google Scholar
  6. 6.
    Kubicki, M., Westin, C.F., Maier, S., Mamata, H., Frumin, M., Ernst-Hirshefeld, H., Kikinis, R., Jolesz, F., McCarley, R., Shenton, M.: Cingulate fasciculus integrity disruption in schizophrenia: A magnetic resonance diffusion tensor imaging study. Biological Psychiatry 54, 1171–1180 (2003)CrossRefGoogle Scholar
  7. 7.
    Eberly, D., Gardner, R., Morse, B., Pizer, S.: Ridges for image analysis. Journal of Mathematical Imaging and Vision 4, 351–371 (1994)CrossRefGoogle Scholar
  8. 8.
    Smith, S., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T., Mackay, C., Watkins, K., Ciccarelli, O., Cader, M., Matthews, P., Behrens, T.: Tract-based spatial statistics: Voxelwise analysis of multiple-subject diffusion data. Technical Report TR05SS1, Oxford University Centre for Functional MRI of the Brain (2006)Google Scholar
  9. 9.
    de Saint-Venant, M.: Surfaces à plus grande pente constituées sur des lignes courbes. Bulletin de la Société Philomathématique de Paris, 24–30 (1852)Google Scholar
  10. 10.
    Haralick, R.M.: Ridges and valleys on digital images. Computer Vision, Graphics and Image Processing 22, 28–38 (1983)CrossRefGoogle Scholar
  11. 11.
    Maxwell, J.: On hills and dales. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 40(269), 421–425 (1870)Google Scholar
  12. 12.
    Gauch, J.M., Pizer, S.M.: Multiresolution analysis of ridges and valleys in grey-scale images. IEEE Trans. Pat. Analysis and Mach. Int. 15(6), 635–646 (1993)CrossRefGoogle Scholar
  13. 13.
    Pajevic, S., Aldroubi, A., Basser, P.: A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance 154, 85–100 (2002)CrossRefGoogle Scholar
  14. 14.
    O’Donnell, L., Grimson, W., Westin, C.F.: Interface detection in diffusion tensor MRI. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 360–367. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Aldroubi, A., Basser, P.: Reconstruction of vector and tensor fields from sampled discrete data. Contemporary Mathematics 247, 1–15 (1999)MathSciNetGoogle Scholar
  16. 16.
    Gonzalez, R., Woods, R.: Digital Image Processing, 2nd edn. Addison-Wesley Publishing Company, Reading (2002)Google Scholar
  17. 17.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  18. 18.
    Morse, B.S.: Computation of Object Cores from Grey-Level Images. PhD thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC (1994)Google Scholar
  19. 19.
    Furst, J.D., Pizer, S.M., Eberly, D.H.: Marching cores: A method for extracting cores from 3d medical images. In: Proceedings of IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 124–130 (1996)Google Scholar
  20. 20.
    Furst, J.D., Pizer, S.M.: Marching ridges. In: Proceedings of 2001 IASTED International Conference on Signal and Image Processing (2001)Google Scholar
  21. 21.
    Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide, 4th edn. Addison-Wesley, Reading (2004)Google Scholar
  22. 22.
    Mori, S., Wakana, S., Nagae-Poetscher, L., Zijl, P.V.: MRI Atlas of Human White Matter. Elsevier, Amsterdam (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gordon Kindlmann
    • 1
  • Xavier Tricoche
    • 2
  • Carl-Fredrik Westin
    • 1
  1. 1.Laboratory of Mathematics in Imaging, Department of RadiologyHarvard Medical SchoolUSA
  2. 2.Scientific Computing and Imaging InstituteUniversity of UtahUSA

Personalised recommendations