3D Histological Reconstruction of Fiber Tracts and Direct Comparison with Diffusion Tensor MRI Tractography

  • Julien Dauguet
  • Sharon Peled
  • Vladimir Berezovskii
  • Thierry Delzescaux
  • Simon K. Warfield
  • Richard Born
  • Carl-Fredrik Westin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


A classical neural tract tracer, WGA-HRP, was injected at multiple sites within the brain of a macaque monkey. Histological sections of the labeled fiber tracts were reconstructed in 3D, and the fibers were segmented and registered with the anatomical post-mortem MRI from the same animal. Fiber tracing along the same pathways was performed on the DTI data using a classical diffusion tracing technique. The fibers derived from the DTI were compared with those segmented from the histology in order to evaluate the performance of DTI fiber tracing. While there was generally good agreement between the two methods, our results reveal certain limitations of DTI tractography, particularly at regions of fiber tract crossing or bifurcation.


Primary Motor Cortex Lateral Geniculate Nucleus Wheat Germ Agglutinin Fiber Tract Precentral Gyrus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    La Vail, J., La Vail, M.: Retrograde axonal transport in the central nervous system. Science 176, 1416–1417 (1972)CrossRefGoogle Scholar
  2. 2.
    Bentivoglio, M., Kuypers, H., Catsman-Berrevoets, C., Loewe, H., Dann, O.: Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci. Lett. 18(1), 25–30 (1980)CrossRefGoogle Scholar
  3. 3.
    Kuypers, H., Ugolini, G.: Viruses as transneuronal tracers. Trends Neurosci. 13(2), 71–75 (1990)CrossRefGoogle Scholar
  4. 4.
    Schwab, M., Javoy-Agid, F., Agid, Y.: Labeled wheat germ agglutinin (wga) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res. 152, 145–150 (1978)CrossRefGoogle Scholar
  5. 5.
    Hendry, I., Stockel, K., Thoenen, H., Iversen, L.: The retrograde axonal transport of nerve growth factor. Brain Res. 68, 103–121 (1974)CrossRefGoogle Scholar
  6. 6.
    Stoeckel, K., Schwab, M., Thoenen, H.: Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res. (1977)Google Scholar
  7. 7.
    Glover, J., Petursdottir, G., Jansen, J.: Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. J. Neurosci. Methods 18, 243–254 (1986)CrossRefGoogle Scholar
  8. 8.
    Honig, M., Hume, R.: Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J. Cell Biol. 103, 171–187 (1986)CrossRefGoogle Scholar
  9. 9.
    Katz, L., Burkhalter, A., Dreyer, W.: Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310, 498–500 (1984)CrossRefGoogle Scholar
  10. 10.
    LeBihan, D., Breton, E., Lallemand, D.: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986)Google Scholar
  11. 11.
    Basser, P., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)CrossRefGoogle Scholar
  12. 12.
    Mori, S., Crain, B., Chacko, V., van Zijl, P.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45 (1999)Google Scholar
  13. 13.
    Basser, P.J., Pajevic, P.J., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using dt-mri data. Magn. Reson. Med. (44), 625–632 (2000)Google Scholar
  14. 14.
    Westin, C.F., Maier, S., Mamata, H., Nabavi, A., Jolesz, F., Kikinis, R.: Processing and visualization of diffusion tensor MRI. Medical Image Analysis 6, 93–108 (2002)CrossRefGoogle Scholar
  15. 15.
    Nolte, J.: The Human Brain, An Introduction to Its Functional Anatomy. 5th edn. C.V. Mosby (2002)Google Scholar
  16. 16.
    Peled, S., Berezovskii, V., Hendrickson, P., Born, R., Westin, C.F.: Histological validation of DTI using WGA-HRP in a macaque. In: Proc. ISMRM, Miami (2005)Google Scholar
  17. 17.
    Mesulam, M.: Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J. Histochem Cytochem. 26 (1978)Google Scholar
  18. 18.
    Dauguet, J.: L’imagerie post mortem tridimensionnelle cérébrale. PhD thesis, École Centrale de Paris (2005)Google Scholar
  19. 19.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  20. 20.
    Delzescaux, T., Dauguet, J., Condé, F., Maroy, R., Frouin, V.: Using 3D non rigid FFD-based method to register post mortem 3D histological data and in vivo MRI of a baboon brain. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 965–966. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Tuch, D.S.: Diffusion MRI of Complex Tissue Structure. PhD thesis, MIT (2002)Google Scholar
  22. 22.
    Perrin, M., Poupon, C., Rieul, B., Leroux, P., Constantinesco, A., Mangin, J.F., Bihan, D.L.: Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner. Phil. Trans. R. Soc. B 360, 881–891 (2005)CrossRefGoogle Scholar
  23. 23.
    Peled, S., Westin, C.F.: Geometric extraction of two crossing tracts in DWI. In: Proc. ISMRM, Miami (2005)Google Scholar
  24. 24.
    Bergmann, Ø., Kindlmann, G., Lundervold, A., Westin, C.F.: Diffusion k-tensor estimation from q-ball imaging using discretized principal axes. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 268–275. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Julien Dauguet
    • 1
  • Sharon Peled
    • 2
  • Vladimir Berezovskii
    • 3
  • Thierry Delzescaux
    • 4
  • Simon K. Warfield
    • 1
  • Richard Born
    • 3
  • Carl-Fredrik Westin
    • 5
  1. 1.Computational Radiology Laboratory, Children’s HospitalBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Harvard Center for Neurodegeneration and RepairBostonUSA
  3. 3.Department of NeurobiologyHarvard Medical SchoolBostonUSA
  4. 4.Service Hospitalier Frédéric JoliotCEAOrsayFrance
  5. 5.Laboratory of Mathematics in ImagingBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations