Fast Deformable Registration of 3D-Ultrasound Data Using a Variational Approach

  • Darko Zikic
  • Wolfgang Wein
  • Ali Khamene
  • Dirk-André Clevert
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


We present an intensity based deformable registration algorithm for 3D ultrasound data. The proposed method uses a variational approach and combines the characteristics of a multilevel algorithm and the properties of ultrasound data in order to provide a fast and accurate deformable registration method. In contrast to previously proposed approaches, we use no feature points and no interpolation technique, but compute a dense displacement field directly. We demonstrate that this approach, although it includes solving large PDE systems, reduces the computation time if implemented using efficient numerical techniques.

The performance of the algorithm is tested on multiple 3D US images of the liver. Validation is performed by simulations, similarity comparisons between original and deformed images, visual inspection of the displacement fields and visual assessment of the deformed images by physicians.


Variational Approach Regularization Term Coarse Level Template Image Registration Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Foroughi, P., Abolmaesumi, P.: Elastic registration of 3D ultrasound images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 83–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Xiao, G., Brady, M., Noble, J.A., Burcher, M., English, R.: Non-rigid registration in 3D free-hand ultrasound imaging of the breast. In: Lemke, H.U., Vannier, M.W., Inamura, K., Farman, A.G., Doi, K. (eds.) IPMI 1997. International Congress Series, vol. 1230, pp. 1199–1200. Elsevier, Amsterdam (2001)Google Scholar
  3. 3.
    Krucker, J.F., LeCarpentier, G.L., Fowlkes, J.B., Carson, P.L.: Rapid elastic image registration for 3-D ultrasound. IEEE Trans. Medical Imaging 21, 1384–1394 (2002)CrossRefGoogle Scholar
  4. 4.
    Hermosillo, G.: Variational Methods for Multimodal Image Matching. PhD thesis, Université de Nice - Sophia Antiplois (2002)Google Scholar
  5. 5.
    Modersitzki, J.: Numerical methods for image registration. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  6. 6.
    Álvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39, 41–56 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Variational optical flow computation in real time. IEEE Transactions on Image Processing 14, 608–615 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Briggs, W.L., Henson, V.E., MacCormick, S.F.: A multigrid tutorial, 2nd edn. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Wein, W., Roeper, B., Navab, N.: Automatic Registration and Fusion of Ultrasound with CT for Radiotherapy. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 303–311. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Darko Zikic
    • 1
  • Wolfgang Wein
    • 1
  • Ali Khamene
    • 2
  • Dirk-André Clevert
    • 3
  • Nassir Navab
    • 1
  1. 1.Chair for Computer Aided Medical Procedures (CAMP)Technische Universität MünchenGermany
  2. 2.Imaging and Visualization Dept.Siemens Corporate ResearchPrincetonUSA
  3. 3.Department of Clinical RadiologyUniversity Hospitals Munich-GrosshadernGermany

Personalised recommendations