A New Method for CT to Fluoroscope Registration Based on Unscented Kalman Filter

  • Ren Hui Gong
  • A. James Stewart
  • Purang Abolmaesumi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


We propose a new method for CT to fluoroscope registration which is very robust and has a wide capture range. The method relies on the Unscented Kalman Filter to search for an optimal registration solution and on modern commodity graphics cards for fast generation of digitally reconstructed radiographs. We extensively test our method using three different anatomical data sets and compare it with an implementation of the commonly used simplex-based method. The experimental results firmly support that, under the same testing conditions, our proposed technique outperforms the simplex-based method in capture range while providing comparable accuracy and computation time.


Unscented Kalman Filter Target Registration Error Unscented Transform Capture Range Scaphoid Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tomazevic, D., Likar, B., Permus, F.: 3-D/2-D registration by integrating 2-D information in 3-D. IEEE Trans. Med. Imag. 25(1), 17–27 (2006)CrossRefGoogle Scholar
  2. 2.
    Bethune, C., Stewart, J.: Adaptive slice geometry for hardware-assisted volume rendering. Journal of Graphics Tools 10(1), 55–70 (2005)Google Scholar
  3. 3.
    Russakoff, D., Rohlfing, T., Rueckert, D., Shahidi, R., Kim, D., Maurer, C.: Fast calculation of digitally reconstructed radiographs using light fields. In: Medical Imaging (2003)Google Scholar
  4. 4.
    Bayouth, D.L.J., Kanade, T.: Transgraph: Interactive intensity-based 2-D/3-D registration of x-ray and ct data. In: SPIE Medical Imaging, vol. 3979, pp. 385–396 (2000)Google Scholar
  5. 5.
    Lacroute, P., Levoy, M.: Fast volume rendering using a shear-warp factorization of the viewing transformation. Computer Graphics 28, 451–458 (1994)Google Scholar
  6. 6.
    Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L., Hawkes, D.J.: A comparison of similarity measures for use in 2-D/3-D medical image registration. IEEE Trans. Med. Imag. 17(4), 586–595 (1998)CrossRefGoogle Scholar
  7. 7.
    Livyatan, H., Yaniv, Z., Joskowicz, L.: Gradient-based 2-D/3-D rigid registration of fluoroscopic x-ray to ct. IEEE Trans. Med. Imag. 22(11), 1395–1406 (2003)CrossRefGoogle Scholar
  8. 8.
    Zollei, L., Grimson, E., Norbash, A., Wells, W.: 2D-3D rigid registration of x-ray fluoroscopy and ct images using mutual information and sparsely sampled histogram estimators. In: CVPR, vol. 2, pp. 696–703 (2001)Google Scholar
  9. 9.
    van de Kraats, E., Penney, G., Tomazevic, D., van Walsum, T., Niessen, W.: Standardized evaluation of 2D-3D registration. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 574–581. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Tang, T., Ellis, R., Fichtinger, G.: Fiducial registration from a single X-ray image: A new technique for fluoroscopic guidance and radiotherapy. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 502–511. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Wan, E., van der Merwe, R.: The unscented kalman filter for nonlinear estimation. In: IEEE Symposium 2000 (AS-SPCC) (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ren Hui Gong
    • 1
  • A. James Stewart
    • 1
  • Purang Abolmaesumi
    • 1
  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations