New CTA Protocol and 2D-3D Registration Method for Liver Catheterization

  • Martin Groher
  • Nicolas Padoy
  • Tobias F. Jakobs
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


2D-3D registration for angiographic liver interventions is an unsolved problem mainly because of two reasons. First, a suitable protocol for Computed Tomography Angiography (CTA) to contrast liver arteries is not used in clinical practice. Second, an adequate registration algorithm which addresses the difficult task of aligning deformed vessel structures has not been developed yet. We address the first issue by introducing an angiographic CT scanning phase and thus create a strong link between radiologists and interventionalists. The scan visualizes arteries similar to the vasculature captured with an intraoperative C-arm acquiring Digitally Subtracted Angiograms (DSAs). Furthermore, we propose a registration algorithm using the new CT phase that aligns arterial structures in two steps: a) Initialization of one corresponding feature using vessel diameter information, b) optimization on three rotational and one translational parameter to register vessel structures that are represented as centerline graphs. We form a space of good features by iteratively creating new graphs from projected centerline images and by restricting the correspondence search only on branching points (the vertices) of the vessel tree. This algorithm shows good convergence and proves to be robust against deformation changes, which is demonstrated through studies on one phantom and three patients.


Root Mean Square Compute Tomography Angiography Iterative Close Point Vessel Structure Vessel Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kerrien, E., Berger, M.O., Maurincomme, E., Launay, L., Vaillant, R., Picard, L.: Fully automatic 3D/2D subtracted angiography registration. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 664–671. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Turgeon, G.-A., Lehmann, G., Guiraudon, G., Drangova, M., Holdsworth, D., Peters, T.: 2D-3D registration of coronary angiograms for cardiac procedure planning and guidance. Med. Phys. 32, 3737–3749 (2005)CrossRefGoogle Scholar
  3. 3.
    Kita, Y., Wilson, D., Noble, J.A.: Real-time registration of 3D cerebral vessels to X-ray angiograms. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1125–1133. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Alperin, N., Levin, D.N., Pelizzari, C.A.: Retrospective registration of x-ray angiograms with mr images by using vessels as intrinsic landmarks. Journal of Magnetic Resonance Imaging 4, 139–144 (1994)CrossRefGoogle Scholar
  5. 5.
    Feldmar, J., Ayache, N., Betting, F.: 3D-2D projective registration of free-form curves and surfaces. In: Proc. Int’l. Conf. of Computer Vision (ICCV), pp. 549–556 (1995)Google Scholar
  6. 6.
    Liu, A., Bullitt, E., Pizer, S.: 3D/2D registration via skeletal near projective invariance in tubular objects. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 952–963. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Chan, H., Chung, A., Yu, S., Wells, W.: 2D-3D vascular registration between digital subtraction angiographic (dsa) and magnetic resonance angiographic (mra) images. In: Proc. of the IEEE International Symposium on Biomedical Imaging. LNCS, vol. 1205, pp. 708–711. IEEE, Los Alamitos (2004)Google Scholar
  8. 8.
    Florin, C., Williams, J., Khamene, A., Paragios, N.: Registration of 3D angiographic and x-ray images using sequential monte carlo sampling. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 427–436. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Hipwell, J., Penney, G., McLaughlin, R., Rhode, K., Summers, P., Cox, T., Byrne, J., Noble, J., Hawkes, D.: Intensity based 2D-3D registration of cerebral angiograms. IEEE Trans. on Medical Imaging (TMI) 22, 1417–1426 (2003)CrossRefGoogle Scholar
  10. 10.
    Vermandel, M., Betrouni, N., Palos, G., Gauvrit, J.-Y., Vasseur, C., Rousseau, J.: Registration, matching, and data fusion in 2D/3D medical imaging: Application to DSA and MRA. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 778–785. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Zahlten, C., Jürgens, H., Peitgen, H.O.: Reconstruction of branching blood vessels from ct-data. In: Eurographics Workshop of Visualization in Scientific Computing, pp. 161–168. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Charnoz, A., Agnus, V., Malandain, G., Forest, C., Tajine, M., Soler, L.: Liver registration for the follow-up of hepatic tumors. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 155–162. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Aylward, S., Jomier, J.: Rigid and deformable vasculature-to-image registration: A hierarchical approach. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 829–836. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Palágyi, K., Sorantin, E., Balogh, E., Kuba, A., Halmai, C., Erdöhelyi, B., Hausegger, K.: A sequential 3D thinning algorithm and its medical applications. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 409–415. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Groher
    • 1
  • Nicolas Padoy
    • 1
  • Tobias F. Jakobs
    • 2
  • Nassir Navab
    • 1
  1. 1.Chair for Computer Aided Medical Procedures (CAMP)Technische Universität MünchenGermany
  2. 2.Institute for Clinical RadiologyUniversity of Munich, Grosshadern Hospital 

Personalised recommendations