Markerless Endoscopic Registration and Referencing

  • Christian Wengert
  • Philippe C. Cattin
  • John M. Duff
  • Charles Baur
  • Gábor Székely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4190)


Accurate patient registration and referencing is a key element in navigated surgery. Unfortunately all existing methods are either invasive or very time consuming. We propose a fully non-invasive optical approach using a tracked monocular endoscope to reconstruct the surgical scene in 3D using photogrammetric methods. The 3D reconstruction can then be used for matching the pre-operative data to the intra-operative scene. In order to cope with the near real-time requirements for referencing, we use a novel, efficient 3D point management method during 3D model reconstruction.

The presented prototype system provides a reconstruction accuracy of 0.1 mm and a tracking accuracy of 0.5 mm on phantom data. The ability to cope with real data is demonstrated by cadaver experiments.


Augmented Reality Interest Point Trifocal Tensor Target Anatomy Cadaver Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schlenzka, D., Laine, T., Lund, T.: Computer-assisted spine surgery. European Spine Journal 9 (Suppl. 1), 57–64 (2000)CrossRefGoogle Scholar
  2. 2.
    Kowal, J., Amstutz, C., Ioppolo, J., Nolte, L.P., Styner, M.: Fast automatic bone contour extraction in ultrasound images for intraoperative registration. IEEE Trans. Med. Imag. (2003)Google Scholar
  3. 3.
    Dey, D., Gobbi, D., Slomka, P., Surry, K., Peters, T.: Automatic fusion of freehand endoscopic brain images to three-dimensional surfaces: creating stereoscopic panoramas. IEEE Trans. Med. Imag. (2002)Google Scholar
  4. 4.
    Thoranaghatte, R.U., Zheng, G., Langlotz, F., Nolte, L.P.: Endoscope based hybrid-navigation system for minimally invasive ventral-spine surgeries. Computer Aided Surgery, 351–356 (2005)Google Scholar
  5. 5.
    Mori, K., Deguchi, D., Akiyama, K., Kitasaka, T., Maurer, C.R., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 543–550. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Burschka, D., Li, M., Ishii, M., Taylor, R.H., Hager, G.D.: Scale-invariant registration of monocular endoscopic images to ct-scans for sinus surgery. Medical Image Analysis 9, 413–426 (2005)CrossRefGoogle Scholar
  7. 7.
    Koppel, D., Wang, Y.F.: Image-based rendering and modeling in video-endoscopy. In: Proc. of the IEEE International Symposium on Biomedical Imaging: Macro to Nano, vol. 1, pp. 269–272 (2004)Google Scholar
  8. 8.
    Caban, J.J., Seales, W.B.: Reconstruction and Enhancement in Monocular Laparoscopic Imagery. In: Proc. of Medicine Meets Virtual Reality, vol. 12 (2004)Google Scholar
  9. 9.
    Feuerstein, M., Wildhirt, S.M., Bauernschmitt, R., Navab, N.: Automatic Patient Registration for Port Placement in Minimally Invasive Endoscopic Surgery. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 287–294. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Bockholt, G., Bisler, U., Becker, A.: Augmented reality for enhancement of endoscopic interventions. In: Virtual Reality Proceedings (2003)Google Scholar
  11. 11.
    Deligianni, F., Chung, A., Yang, G.-Z.: Visual Augmentation for Virtual Environments in Surgical Training. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Scholz, M., et al.: Development of an Endoscopic Navigation System Based on Digital Image Processing. Computer Aided Surgery 3 (1998)Google Scholar
  13. 13.
    Sauer, F., Khamene, A., Vogt, S.: An Augmented Reality Navigation System with a Single-Camera Tracker: System Design and Needle Biopsy Phantom Trial. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 116–124. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Mourgues, F., Devemay, F., Coste-Maniere, E.: 3D reconstruction of the operating field for image overlay in 3D-endoscopic surgery. In: Proc. of the IEEE and ACM International Symposium on Augmented Reality (2001)Google Scholar
  15. 15.
    Muacevic, A., Muller, A.: Image-Guided Endoscopic Ventriculostomy with a New Frameless Armless Neuronavigation System. Computer Aided Surgery 4 (1999)Google Scholar
  16. 16.
    Wengert, C., Reeff, M., Cattin, P., Székely, G.: Fully automatic endoscope calibration for intraoperative use. In: BVM, pp. 419–423. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Wengert
    • 1
  • Philippe C. Cattin
    • 1
  • John M. Duff
    • 2
  • Charles Baur
    • 3
  • Gábor Székely
    • 1
  1. 1.Computer Vision LaboratoryETH ZurichZurichSwitzerland
  2. 2.University Hospital of LausanneLausanneSwitzerland
  3. 3.Virtual Reality and Active InterfacesEPFL LausanneLausanneSwitzerland

Personalised recommendations