Fast Hough Transform Based on 3D Image Space Division

  • Witold Zorski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


This paper presents a problem of 3D images decomposition into spheres. The presented method is based on a fast Hough transform with an input image space division. An essential element of this method is the use of a clustering technique for partial data sets. The method simplifies the application of Hough transform to segmentation tasks as well as accelerates calculations considerably.


Input Image Binary Image Cluster Technique Hough Transform Segmentation Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandera, A., Perez-Lorenzo, J.M., Bandera, J.P., Sandoval, F.: Mean shift based clustering of Hough domain for fast line segment detection. PRL (27) (6), 578–586 (2006)Google Scholar
  2. 2.
    Deans, S.R.: Hough transform from the Radon transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 3(2), 185–188 (1981)CrossRefGoogle Scholar
  3. 3.
    Hough, P.V.C.: Method and means for recognizing complex patterns. U.S. Patent 3,069,654 (December 18, 1962)Google Scholar
  4. 4.
    Illingworth, J., Kittler, J.: A survey of the Hough Transform. Computer Vision, Graphics and Image Processing 44, 87–116 (1988)CrossRefGoogle Scholar
  5. 5.
    Leavers, V.F.: Shape Detection in Computer Vision Using the Hough Transform. Springer, London (1992)Google Scholar
  6. 6.
    Li, H., Lavin, M.A., LeMaster, R.J.: Fast Hough transform: a hierarchical approach. Computer Vision, Graphics, and Image Processing 36, 139–161 (1986)CrossRefGoogle Scholar
  7. 7.
    Palmer, P.L., Kittler, J.V., Petrou, M.: An Optimizing Line Finder Using a Hough Transform Algorithm. CVIU (67), (1) 1–23 (1997)Google Scholar
  8. 8.
    Radon, J.: Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Berichte Sachsische Akademie der Wissenschaften Leipzig, Math. Phys. Kl. 69, 262–267 (1917)Google Scholar
  9. 9.
    Tou, J.T., Gonzalez, R.C.: Pattern recognition principles. Addison-Wesley Publishing Company, London (1974)MATHGoogle Scholar
  10. 10.
    Zorski, W.: Application of the Hough transform with a clustering technique to segmentation of digital images. Machine Graphics & Vision 5, 111–121 (1996)Google Scholar
  11. 11.
    Zorski, W.: The Hough Transform Application Including Its Hardware Implementation. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 460–467. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Zorski, W., Foxon, B., Blackledge, J., Turner, M.: Irregular Pattern Recognition Using the Hough transform. Machine Graphics & Vision 9, 609–632 (2000)Google Scholar
  13. 13.
    Zorski, W., Foxon, B., Blackledge, J., Turner, M.: Application of the Circle Hough Transform with a Clustering Technique to Segmentation. In: Image Processing II, pp. 339–348. Horwood Publishing, England (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Witold Zorski
    • 1
  1. 1.Cybernetics Faculty, Military University of TechnologyWarsawPoland

Personalised recommendations