Visibility of Point Clouds and Mapping of Unknown Environments

  • Yanina Landa
  • Richard Tsai
  • Li-Tien Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


We present an algorithm for interpolating the visible portions of a point cloud that are sampled from opaque objects in the environment. Our algorithm projects point clouds onto a sphere centered at the observing locations and performs essentially non-oscillatory (ENO) interpolation to the projected data. Curvatures of the occluding objects can be approximated and used in many ways. We show how this algorithm can be incorporated into novel algorithms for mapping an unknown environment.


Point Cloud Visibility Function Vantage Point Unknown Environment Occlude Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atle, A., Engquist, B.: On surface radiation conditions for high frequency wave scattering (preprint, 2006)Google Scholar
  2. 2.
    Bruno, O., Geuzaine, C.A., Monro Jr., J.A., Reitich, F.: Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 1816, 629–645 (2004)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chin, W.-P., Ntafos, S.: Shortest watchman routes in simple polygons. Discrete Comput. Geom. 6, 9–31 (1991)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ghomi, M.: Shadows and convexity of surfaces. Annals of Mathematics 155, 281–293 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Goodman, J.E., O’Rourke, J. (eds.): Handbook of discrete and computational geometry, 2nd edn. CRC Press LLC, Boca Raton (2004)MATHGoogle Scholar
  6. 6.
    Guilamo, L., Tovar, B., LaValle, S.M.: Pursuit–evasion in an unknown environment using gap navigation graphs. In: IEEE International Conference on Robotics and Automation (2004) (under review)Google Scholar
  7. 7.
    Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially nonoscillatory schemes, III. Journal of Computational Physics 71, 231–303 (1987)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jin, H., Yezzi, A., Tsai, H.-H., Cheng, L.T., Soatto, S.: Estimation of 3D surface shape and smooth radiance from 2D images; a level set approach. Journal of Scientific Computing 19, 267–292 (to appear, 2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    LaValle, S.M., Hinrichsen, J.: Visibility based pursuit-evasion: An extension to curved environments. In: Proc. IEEE International Conference on Robotics and Automation, pp. 1677–1682 (1999)Google Scholar
  10. 10.
    Levoy, M.: The Digital Michelangelo ProjectGoogle Scholar
  11. 11.
    Murray, D., Jennings, C.: Stereo vision based mapping for a mobile robot. In: Proc. IEEE Conf. on Robotics and Automation (1997)Google Scholar
  12. 12.
    Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution point rendering system for large meshes. In: SIGGRAPH, pp. 343–352 (2000)Google Scholar
  13. 13.
    Sachs, S., Rajko, S., LaValle, S.M.: Visibility based pursuit-evasion in an unknown planar environment. International Journal of Robotics Research (to appear, 2003)Google Scholar
  14. 14.
    Tovar, B., LaValle, S.M., Murrieta, R.: Locally-optimal navigation in multiply-connected environments without geometric maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)Google Scholar
  15. 15.
    Tovar, B., LaValle, S.M., Murrieta, R.: Optimal navigation and object finding without geometric maps or localization. In: Proc. IEEE/RSJ International Conference on Robotics and Automation (2003)Google Scholar
  16. 16.
    Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Burchard, P., Sapiro, G.: Visibility and its dynamics in a PDE based implicit framework. Journal of Computational Physics 199, 260–290 (2004)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping methods for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027 (2000)Google Scholar
  19. 19.
    Wolf, D.F., Howard, A., Sukhatme, G.S.: Towards Geometric 3D Mapping of Outdoor Environments Using Mobile Robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1258–1263 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yanina Landa
    • 1
  • Richard Tsai
    • 2
  • Li-Tien Cheng
    • 3
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsThe University of Texas at AustinUSA
  3. 3.Department of MathematicsUniversity of CaliforniaSan DiegoUSA

Personalised recommendations