A New Similarity Measure for Random Signatures: Perceptually Modified Hausdorff Distance

  • Bo Gun Park
  • Kyoung Mu Lee
  • Sang Uk Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


In most content-based image retrieval systems, the low level visual features such as color, texture and region play an important role. Variety of dissimilarity measures were introduced for an uniform quantization of visual features, or a histogram. However, a cluster-based representation, or a signature, has proven to be more compact and theoretically sound for the accuracy and robustness than a histogram. Despite of these advantages, so far, only a few dissimilarity measures have been proposed. In this paper, we present a novel dissimilarity measure for a random signature, Perceptually Modified Hausdorff Distance (PMHD), based on Hausdorff distance. In order to demonstrate the performance of the PMHD, we retrieve relevant images for some queries on real image database by using only color information. The precision vs. recall results show that the proposed dissimilarity measure generally outperforms all other dissimilarity measures on an unmodified commercial image database.


Visual Feature Image Retrieval Color Feature Retrieval Performance Dissimilarity Measure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rubner, Y., Tomasi, C.: Perceptual metrics for image database navigation. Kluwer Academic Publisher, Dordrecht (2001)MATHGoogle Scholar
  2. 2.
    Qiu, G., Lam, K.M.: Frequency layered color indexing for content-based image retrieval. IEEE Trans. Image Processing 12(1), 102–113 (2003)CrossRefGoogle Scholar
  3. 3.
    Dorado, A., Izquierdo, E.: Fuzzy color signature. In: IEEE Int’l. Conference on Image Processing, vol. 1, pp. 433–436 (2002)Google Scholar
  4. 4.
    Smeulders, A.W.M., et al.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  5. 5.
    Gouet, V., Boujemaa, N.: About optimal use of color points of interest for content-based image retrieval, Research Report RR-4439, INRIA Rocquencourt, France (April 2002)Google Scholar
  6. 6.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using teh Hausdorff distance. IEEE Trans. Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)CrossRefGoogle Scholar
  7. 7.
    Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of IEEE International Conference on Pattern Recognition, pp. 566–568 (October 1994)Google Scholar
  8. 8.
    Azencott, R., Durbin, F., Paumard, J.: Multiscale identification of building in compressed large aerial scenes. In: Proceedings of IEEE International Conference on Pattern Recognition, Vienna, Austria, vol. 2, pp. 974–978 (1996)Google Scholar
  9. 9.
    Sim, D.G., Kwon, O.K., Park, R.H.: Object matching algorithms using robust Hausdorff distance measures. IEEE Trans. Image Processing 8(3), 425–428 (1999); A New Similarity Measure for Random Signatures 1001 CrossRefGoogle Scholar
  10. 10.
    Kim, S.H., Park, R.H.: A novel approach to video sequence matching using color and edge features with the modified Hausdorff distance. In: Proc. 2004 IEEE Int. Symp. Circuit and Systems, Vancouver, Canada (May 2004)Google Scholar
  11. 11.
    Bimbo, A.D.: Visual information retrieval. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  12. 12.
    Duda, R.O., Har, P.E., Stork, D.G.: Pattern classification. Wiley & Sons Inc., New York (2001)MATHGoogle Scholar
  13. 13.
    Puzicha, J., Buhmann, J.M., Rubner, Y., Tomasi, C.: Empirical evaluation of dissimilarity measures for color and texture. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1165–1173 (1999)Google Scholar
  14. 14.
    Puzicha, J., Hofmann, T., Buhmann, J.: Nonparametric similarity meausres for unsupervised texture segmentation and image retrieval. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 267–272 (June 1997)Google Scholar
  15. 15.
    Leow, W.K., Li, R.: The analysis and applications of adaptive-binning color histograms. Computer Vision and Image Understanding 94, 67–91 (2004)CrossRefGoogle Scholar
  16. 16.
    Imai, F.H., Tsumura, N., Miyake, Y.: Perceptual color difference metric for complex images based on Mahalanobis distance. Journal of Electronic Imaging 10(2), 385–393 (2001)CrossRefGoogle Scholar
  17. 17.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color image processing and applications. Springer, New York (2000)Google Scholar
  18. 18.
    Swain, M., Ballard, D.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  19. 19.
    Hafner, J., Sawhney, H.S., Equitz, W., Flickner, M., Niblack, W.: Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. Pattern Analysis and Machine Intelligence 17(7), 729–735 (1995)CrossRefGoogle Scholar
  20. 20.
    Flickenr, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: QBIC system. IEEE Comput. 29(9), 23–32 (1995)Google Scholar
  21. 21.
    Song, T., Luo, R.: Testing color-difference formulae on complex images using a CRT monitor. In: Proc. 8th Color Imaging Conference (2000)Google Scholar
  22. 22.
    Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: Current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation (1999)Google Scholar
  23. 23.
    Ma, W.Y., Zhang, H.J.: Content-based image indexing and retrieval. In: Handbook of Multimedia Computing. CRC Press, Boca Raton (1999)Google Scholar
  24. 24.
    Pentland, A., Picard, R.W., Sclaroff, S.: Photobook: Content-based manipulation of image databases. International Journal of Computer Vision 18(3), 233–254 (1996)CrossRefGoogle Scholar
  25. 25.
    Smith, J.R., Chang, S.F.: VisualSEEK: A fully automated content-based image query system. In: ACM Multimedia, Boston, MA (1996)Google Scholar
  26. 26.
    Rui, Y., Huang, T., Mehrotra, S.: Content-based image retrieval with relevance feedback in MARS. In: IEEE Int’l. Conference on Image Processing (1997)Google Scholar
  27. 27.
    Wang, T., Rui, Y., Sun, J.G.: Constraint based region matching for image retrieval. International Journal of Computer Vision 56(1/2), 37–45 (2004)CrossRefGoogle Scholar
  28. 28.
    Tieu, K., Viola, P.: Boosting image retrieval. International Journal of Computer Vision 56(1/2), 17–36 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bo Gun Park
    • 1
  • Kyoung Mu Lee
    • 1
  • Sang Uk Lee
    • 1
  1. 1.School of Electrical Eng., ASRISeoul National UniversitySeoulKorea

Personalised recommendations