Advertisement

A Novel Stochastic Attributed Relational Graph Matching Based on Relation Vector Space Analysis

  • Bo Gun Park
  • Kyoung Mu Lee
  • Sang Uk Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)

Abstract

In this paper, we propose a novel stochastic attributed relational graph (SARG) matching algorithm in order to cope with possible distortions due to noise and occlusion. The support flow and the correspondence measure between nodes are defined and estimated by analyzing the distribution of the attribute vectors in the relation vector space. And then the candidate subgraphs are extracted and ordered according to the correspondence measure. Missing nodes for each candidates are identified by the iterative voting scheme through an error analysis, and then the final subgraph matching is carried out effectively by excluding them. Experimental results on the synthetic ARGs demonstrate that the proposed SARG matching algorithm is quite robust and efficient even in the noisy environment. Comparative evaluation results also show that it gives superior performance compared to other conventional graph matching approaches.

Keywords

Match Algorithm Attribute Vector Graph Match Graph Isomorphism Subgraph Isomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wong, A.K.C., You, M.: Entropy and distance of random graphs with application to structural pattern recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 7(5) (September 1985)Google Scholar
  2. 2.
    Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.: Graph-based representations and techniques for image processing and image analysis. Pattern Recognition 35, 639–650 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Serratosa, F., Alquézar, R., Sanfeliu, A.: Function-described graphs for modelling objects represented by sets of attributes graphs. Pattern Recognition 36, 781–798 (2003)CrossRefGoogle Scholar
  4. 4.
    Li, S.Z.: Matching: invariant to translations, rotations and scale changes. Pattern Recognition 25, 583–594 (1992)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Christmas, W.J., Kittler, J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE Trans. Pattern Analysis and Machine Intelligence 17(8), 749–764 (1995)CrossRefGoogle Scholar
  6. 6.
    Messmer, B.T., Bunke, H.: A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Trans. Pattern Analysis and Machine Intelligence 20(5), 493–503 (1998)CrossRefGoogle Scholar
  7. 7.
    Messmer, B.T., Bunke, H.: A decision tree approach to graph and subgraph isomorphism detection. Pattern Recognition 32, 1979–1998 (1999)CrossRefGoogle Scholar
  8. 8.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996)CrossRefGoogle Scholar
  9. 9.
    Tsai, W.H., Fu, K.S.: Subgraph error-correcting isomorphisms for syntactic pattern recognition. IEEE Trans. Systems Man and Cybernetics 13(1), 48–62 (1983)MATHMathSciNetGoogle Scholar
  10. 10.
    El-Sonbaty, Y., Ismail, M.A.: A new algorithm for subgraph optimal isomorphism. Pattern Recognition 31(2), 205–218 (1998)CrossRefGoogle Scholar
  11. 11.
    Herault, L., Horaud, R., Veillon, F., Niez, J.J.: Symbolic image matching by simulated annealing. In: Proc. British Machine Vision Conference, Oxford, pp. 319–324 (1990)Google Scholar
  12. 12.
    Krcmar, M., Dhawan, A.: Application of genetic algorithms in graph matching. In: Proc. Int’l. Conf. Neural Networks, vol. 6, pp. 3872–3876 (1994)Google Scholar
  13. 13.
    van Wyk, B.J., van Wyk, M.A.: The spherical approximation graph matching algorithm. In: Proc. Int’l. Workshop on Multidiscilinary Design Optimization, pp. 280–288 (August 2000)Google Scholar
  14. 14.
    van Wyk, B.J., Clark, J.: An algorithm for approximate least-squares attributed graph matching. In: Problems in Applied Mathematics and Computational Intelligence, pp. 67–72 (2000)Google Scholar
  15. 15.
    van Wyk, M.A., Durrani, T.S., van Wyk, B.J.: A RKHS interpolator-based graph matching algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 988–995 (2002)CrossRefGoogle Scholar
  16. 16.
    van Wyk, B.J., van Wyk, M.A.: Kronecker product graph matching. Pattern Recognition 36, 2019–2030 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Nevatia, R., Babu, K.R.: Line extraction and description. Computer Graphics and Image Processing 13(1), 250–269 (1980)Google Scholar
  18. 18.
    Park, B.G., Lee, K.M., Lee, S.U., Lee, J.H.: Recognition of partially occluded objects using probabilistic ARG-based matching. Computer Vision and Image Understanding 90(3), 217–241 (2003)MATHCrossRefGoogle Scholar
  19. 19.
    Kim, D.H., Yun, I.D., Lee, S.U.: A new attributed relational graph matching algorithm using the nested structure of earth mover’s distance. In: Proceedings of IEEE International conference on Pattern Recognition, Cambridge, UK, pp. 48–51 (August 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bo Gun Park
    • 1
  • Kyoung Mu Lee
    • 1
  • Sang Uk Lee
    • 1
  1. 1.School of Electrical Eng., ASRISeoul National UniversitySeoulKorea

Personalised recommendations