Toward Visually Inferring the Underlying Causal Mechanism in a Traffic-Light-Controlled Crossroads

  • Joaquín Salas
  • Sandra Canchola
  • Pedro Martínez
  • Hugo Jiménez
  • Reynaldo C. Pless
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


The analysis of the events taking place in a crossroads offers the opportunity to avoid harmful situations and the potential to increase traffic efficiency in modern urban areas. This paper presents an automatic visual system that reasons about the moving vehicles being observed and extracts high-level information, useful for traffic monitoring and detection of unusual activity. Initially, moving objects are detected using an adaptive background image model. Then, the vehicles are tracked down by an iterative method where the features being tracked are updated frame by frame. Next, paths are packed into routes using a similarity measure and a sequential clustering algorithm. Finally, the crossroads activity is organized into states representing the underlying mechanism that causes the type of motion being detected. We present the experimental evidence that suggests that the framework may prove to be useful as a tool to monitor traffic-light-controlled crossroads.


Hide Markov Model Background Model Machine Intelligence Video Surveillance Intelligent Transportation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baofeng, G., Kin-Man, L., Kwan-Ho, L., Wan-Chin, S.: Human Face Recognition based on Spatially Weighted Hausdorff Distance. Pattern Recognition Letters 24(1-3), 499–507 (2003)CrossRefGoogle Scholar
  2. 2.
    Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A Real-Time Computer Vision System for Vehicle Tracking and Traffic Surveillance. Transportation Research 6(4), 271–288 (1998)CrossRefGoogle Scholar
  3. 3.
    Collins, R.T., Lipton, A.J., Kanade, T.: Introduction to the Special Section on Video Surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 745–746 (2000)CrossRefGoogle Scholar
  4. 4.
    Dailey, D.J., Cathey, F.W., Pumrin, S.: An Algorithm to Estimate Mean Traffic Speed using Uncalibrated Cameras. IEEE Transactions on Intelligent Transportation Systems 1(2), 98–107 (2000)CrossRefGoogle Scholar
  5. 5.
    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and Foreground Modeling using Nonparametric Kernel Density Estimation for Visual Surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)CrossRefGoogle Scholar
  6. 6.
    Foresti, G.L., Pani, B.: Monitoring Motorway Infrastructures for Detection of Dangerous Events. In: International Conference on Image Analysis and Processing, pp. 1144–1147 (1999)Google Scholar
  7. 7.
    Gupte, S., Masoud, O., Martin, R.F.K., Papanikolopoulos, N.P.: Detection and Classification of Vehicles. IEEE Transactions on Intelligent Transportation Systems 3(1), 37–47 (2002)CrossRefGoogle Scholar
  8. 8.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing Images using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)CrossRefGoogle Scholar
  9. 9.
    Huttenlocher, D.P., Kedem, K., Sharir, M.: The Upper Envelope of Voronoi Surfaces and its Applications. In: Annual Symposium on Computational Geometry, pp. 194–203 (1991)Google Scholar
  10. 10.
    Junejo, I., Javed, O., Shah, M.: Multi feature path modeling for video surveillance. In: IEEE International Conference on Pattern Recognition, vol. 2, pp. 716–719 (2004)Google Scholar
  11. 11.
    Lou, J., Liu, Q., Tan, T., Hu, W.: Semantic Interpretation of Object Activities in a Surveillance System. In: IEEE International Conference on Pattern Recognition, vol. 3, pp. 777–780 (2002)Google Scholar
  12. 12.
    Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  13. 13.
    Makris, D., Ellis, T.: Path Detection in Video Surveillance. Image and Vision Computing Journal 20(12), 895–903 (2002)CrossRefGoogle Scholar
  14. 14.
    Masoud, O., Papanikolopoulos, N.P., Kwon, E.: The Use of Computer Vision in Monitoring Weaving Sections. IEEE Transactions on Intelligent Transportation Systems 2(1), 18–25 (2001)CrossRefGoogle Scholar
  15. 15.
    Mussone, L., Sala, G.: An Analysis of Lateral Support Systems to Increase Safety at Crossroads. In: IEEE Intelligent Vehicles Symposium, pp. 383–388 (2003)Google Scholar
  16. 16.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A Bayesian Computer Vision System for Modeling Human Interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)CrossRefGoogle Scholar
  17. 17.
    Rigoll, G., Eickeler, S., Muller, S.: Person tracking in real-world scenarios using statistical methods. In: Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 207–213 (2000)Google Scholar
  18. 18.
    Salas, J., Martínez, P., González, J.: Background Updating with the Use of Intrinsic Curves. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 731–742. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Seki, M., Fujiwara, H., Sumi, K.: A robust background subtraction method for changing background. In: WACV 2000, pp. 207–213 (2000)Google Scholar
  20. 20.
    Stauffer, C., Grimson, W.E.L.: Adaptative Background Mixture Models for Real-Time Tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)Google Scholar
  21. 21.
    Theodoris, S., Koutroumbas, K.: Pattern Recognition. Academic Press, London (1999)Google Scholar
  22. 22.
    Tomasi, C., Manduchi, R.: Stereo matching as a nearest-neighbor problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 333–340 (1998)CrossRefGoogle Scholar
  23. 23.
    Tomasi, C., Shi, J.: Good Features to Track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)Google Scholar
  24. 24.
    Wada, T., Matsuyama, T.: Multiobject Behavior Recognition by Event Driven Selective Attention Method. Pattern Analysis and Machine Intelligence 22(8), 873–887 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joaquín Salas
    • 1
  • Sandra Canchola
    • 1
  • Pedro Martínez
    • 1
  • Hugo Jiménez
    • 1
  • Reynaldo C. Pless
    • 1
  1. 1.CICATA Querétaro, Instituto Politécnico NacionalQuerétaroMexico

Personalised recommendations