Extrema Temporal Chaining: A New Method for Computing the 2D-Displacement Field of the Heart from Tagged MRI

  • Jean-Pascal Jacob
  • Corinne Vachier
  • Jean-Michel Morel
  • Jean-Luc Daire
  • Jean-Noel Hyacinthe
  • Jean-Paul Vallée
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


This work takes is part of a medical research project which intends to induce and study cardiac hibernation in rats. The underlying goal is to understand the physiology of heart disease. We present here a novel method to compute the 2D-deformation field of the heart (rat or human) from tagged MRI. Previous work is not suitable for wide clinical use for different reasons, including important computing time and lack of robustness. We propose an original description of tags as local minima of 1D signals. This leads us to a new formulation of the tag tracking problem as an Extrema Temporal Chaining (ETC) and a 2D-rendering. 2D-displacements are then interpolated on a dense field. The developed method is fast and robust. Its performances are compared to those of HARP, a leading method in this field.


Motion Estimation Crest Line Grid Image Medical Research Project Noninvasive Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chadwick, R.S.: Mechanics of left ventricle. Biophysical journal 39, 279–288 (1982)CrossRefGoogle Scholar
  2. 2.
    Henson, R.E., et al.: Left ventricular torsion is equal in mice and humans. Am. J. Physiol. Heart Circ. Physiol. 278, H1117–H1123 (2000)Google Scholar
  3. 3.
    Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171, 841–845 (1989)Google Scholar
  4. 4.
    Axel, L., Goncalves, R., Bloomgarden, D.: Regional heart wall motion : Two-dimensional analysis and functional imaging with MR imaging. Radiology 183, 745–750 (1992)Google Scholar
  5. 5.
    Fisher, S.E., et al.: Improved myocardial Tagging Contrast. Magnetic Resonance in Medicine 30, 191–200 (1993)CrossRefGoogle Scholar
  6. 6.
    Fisher, D.J., Collins, S.: Automated detection of noninvasive magnetic resonance imaging markers. Computers in Cardiology, 493–496 (1991)Google Scholar
  7. 7.
    Delman, L., Kent, J.T., Mardia, K.V.: Tracking of Tagged MR Images by Bayesian Analysis of a Network of Quads. In: Proceedings of the 15th International Conference on Information Processing in Medical Imaging, pp. 495–500 (1997)Google Scholar
  8. 8.
    Denney Jr., T.S.: Estimation and detection of myocardial tags in MR images without user defined myocardial contours, phd, electrical engineering department, auburn university (May 1997)Google Scholar
  9. 9.
    Guttman, M.A., Prince, J.L., McVeigh, E.R.: Tag and contour detection in tagged MR images of the left ventricle. IEEE Transactions on Medical Imaging 13(1), 74–88 (1994)CrossRefGoogle Scholar
  10. 10.
    Guttman, M.A., Zerhouni, E.A., McVeigh, E.R.: Analysis and Visualization of Cardiac Function from MR Images. IEEE, Computer Graphics and Applications 17, 30–38 (1997)CrossRefGoogle Scholar
  11. 11.
    Kumar, S., Goldgof, D.: Automatic tracking of CSPAMM grid and the estimation of deformation parameters from cardiac MR images. IEEE Transactions on Medical Imaging 13(1), 122–132 (1994)CrossRefGoogle Scholar
  12. 12.
    Young, A.A., Axel, L.: Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization - a model-based approach. Radiology 185, 241–247 (1992)Google Scholar
  13. 13.
    Amini, A.A., et al.: Energy-minimizing deformable grids for tracking tagged MR cardiac images. Computers in Cardiology, 651–654 (October 1992)Google Scholar
  14. 14.
    Amini, A.A., Yasheng Chen Curwen, R.W., Mani, V., Sun, J.: Coupled B-snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Transactions on Medical Imaging 17, 344–356 (1998)CrossRefGoogle Scholar
  15. 15.
    Amini, A.A., Chen, Y., Elayyadi, M., Radeva, P.: Tag Surface Reconstruction and Tracking of Myocardial Beads from CSPAMM-MRI with Parametric B-Spline Surfaces. IEEE Transactions on Medical Imaging 20(2) (February 2001)Google Scholar
  16. 16.
    Chang, H.-H., Moura, J.M.F., Wu, Y.L., Sato, K., Ho, C.: Reconstruction of 3D dense cardiac motion from tagged MR sequences. In: International Symposium on BioImaging, Crystal City, VA (April 2004)Google Scholar
  17. 17.
    Tadikonda, S.K., Fisher, D.J., Collins, S.M.: Automated detection of cine-CSPAMM magnetic resonance tags at sub-pixel resolutions. In: Proceedings of Computers in Cardiology (1992)Google Scholar
  18. 18.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  19. 19.
    Gennert, M.A., Negahdaripour, S.: Relaxing the brightness constancy assumption in computing optical flow, M.I.T. Technical Report (June 1987); A.I. Memo No. 975Google Scholar
  20. 20.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: Proceedings of International Conference on Computer Vision, pp. 259–268 (1987)Google Scholar
  21. 21.
    Denney Jr., T.S.: Stochastic estimation of deformable motion from magnetic resonance tagged cardiac images, PhD thesis, Johns Hopkins University (1994)Google Scholar
  22. 22.
    Prince, J.L., McVeigh, E.R.: Motion estimation from tagged MR image sequences. IEEE Transactions on Medical Imaging 11(2), 238–249 (1992)CrossRefGoogle Scholar
  23. 23.
    Gupta, S.: Optical Flow Techniques for Cardiac Motion Estimation from Tagged MR Images, M.S.E. 1994, Ph.D. (1998)Google Scholar
  24. 24.
    Dougherty, L., Asmuth, J.C., Blom, A.S., Axel, L., Kumar, R.: Validation of an optical flow method for tag displacement estimation. IEEE Transactions on Medical Imaging 18(4), 359–363 (1999)CrossRefGoogle Scholar
  25. 25.
    Gupta, S.N., Prince, J.L., Androutsellis-Theotokis, S.: Bandpass Optical Flow for Tagged MR Imaging. In: Proceedings of International Conference on Image Processing, San Diego, October 1997, pp. III:364–367 (1997)Google Scholar
  26. 26.
    Osman, N.F., Prince, J.L.: Angle Images for Measuring Heart Motion from Tagged MRI. In: Proceedings of IEEE International Conference on Image Processing, Chicago, October 1998, vol. 1, pp. 704–708 (1998)Google Scholar
  27. 27.
    Osman, N.F.: Measuring Regional Cardiac Function Using Harmonic Phase Magnetic Resonance Imaging (Advisor: Professor Prince), M.S.E. 1998, Ph.D (2000)Google Scholar
  28. 28.
    Chandrashekara, R., Mohiaddin, R.H., Rueckert, D.: Analysis of myocardial motion in tagged MR images using non-rigid image registration. In: Proc. SPIE Medical Imaging 2002: Image Processing, San Diego, CA (February 2002)Google Scholar
  29. 29.
    Petitjean, C.: Recalage non rigide d’images par approches variationnelles statistiques - Application l’analyse et la modélisation de la function myocardique en IRM, Thesis / PhD (September 24, 2003), ARTEMIS (Institut National des Télécommunications, Evry), UNIVERSITE RENE DESCARTES - PARIS VGoogle Scholar
  30. 30.
    Kerwin, W.S., Prince, J.L.: Cardiac material markers from tagged MR images. Med. Image Anal. 2(4), 339–353 (1998)CrossRefGoogle Scholar
  31. 31.
    O’Dell, W.G., Moore, C.C., Hunter, W.C., Zerhouni, E.A., McVeigh, E.R.: Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 195, 829–835 (1995)Google Scholar
  32. 32.
    Denney Jr., T.S., Prince, J.L.: Reconstruction of 3D Left Ventricular Motion from Planar Tagged Cardiac MR Images: an Estimation Theoretic Approach. IEEE Transaction on Medical Imaging 4(4), 625–635 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Pascal Jacob
    • 1
  • Corinne Vachier
    • 1
  • Jean-Michel Morel
    • 1
  • Jean-Luc Daire
    • 2
  • Jean-Noel Hyacinthe
    • 2
  • Jean-Paul Vallée
    • 2
  1. 1.CMLA (Centre des Mathématiques et de Leurs Applications) of ENS (Ecole Normale Supérieure)Cachan
  2. 2.Department of radiology of the GUH (Geneva University Hospital)Project of the Swiss National Science Foundation

Personalised recommendations