Leukocyte Segmentation in Blood Smear Images Using Region-Based Active Contours

  • Seongeun Eom
  • Seungjun Kim
  • Vladimir Shin
  • Byungha Ahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


In this paper, we propose a segmentation method for an automated differential counter using image analysis. The segmentation here is to extract leukocytes (white blood cells) and separate its constituents, nucleus and cytoplasm, in blood smear images. For this purpose, a region-based active contour model is used where region information is estimated using a statistical analysis. The role of the regional statistics is mainly to attract evolving contours toward the boundaries of leukocytes, avoiding problems with initialization. And contour deformation near to the boundaries is constrained by an additional regularizer. The active contour model is implemented using a level set method and validated with a leukocyte image database.


Input Image Active Contour Region Information Active Contour Model Initial Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wermser, D., Haussmann, G., Liedtke, C.E.: Segmentation of blood smears by hierarchical thresholding. Computer Vision, Graphics, and Image Processing 25, 151–168 (1984)CrossRefGoogle Scholar
  2. 2.
    Cseke, I.: A fast segmentation scheme for white blood cell images. In: Proc. 11th IAPR Int. Conf. Pattern Recognition, Conf. C: Image, Speech and Signal Analysis, vol. 3, pp. 530–533 (1992)Google Scholar
  3. 3.
    Sinha, N., Ramakrishnan, A.G.: Automation of differential blood count. In: Proc. Conf. Convergent Technologies for Asia-Pacific Region, TENCON 2003, vol. 2, pp. 547–551 (2003)Google Scholar
  4. 4.
    Haussmann, G., Liedtke, C.E.: A region extraction approach to blood smear segmentation. Computer Vision, Graphics, and Image Processing 25, 133–150 (1984)CrossRefGoogle Scholar
  5. 5.
    Park, J., Keller, J.M.: Fuzzy patch label relaxation in bone marrow cell segmentation. In: Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, pp. 1133–1138 (1997)Google Scholar
  6. 6.
    Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., Beksac, S.: An automated differential blood count system. In: Proc. 23rd EMBS Int. Conf., pp. 2583–2586 (2001)Google Scholar
  7. 7.
    Nilsson, B., Heyden, A.: Segmentation of dense leukocyte clusters. In: Proc. IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 221–227 (2001)Google Scholar
  8. 8.
    Nilsson, B., Heyden, A.: Model-based segmentation of leukocytes clusters. In: Proc. 16th International Conf. Pattern Recognition, vol. 1, pp. 727–730 (2002)Google Scholar
  9. 9.
    Theerapattanakul, J., Plodpai, J., Pintavirooj, C.: An efficient method for segmentation step of automated white blood cell classifications. In: Proc. IEEE Region 10 Conf. TENCON 2004, vol. 1, pp. 191–194 (2004)Google Scholar
  10. 10.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)Google Scholar
  11. 11.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics 42, 577–684 (1989)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
  13. 13.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Computer Vision 1, 321–331 (1988)CrossRefGoogle Scholar
  14. 14.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, 1st edn. Springer, New York (2002)Google Scholar
  15. 15.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  16. 16.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Applied Mathematical Sciences, vol. 147. Springer, New York (2001)Google Scholar
  19. 19.
    Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric analysis of white matter lesions in mr images: method and validation. IEEE Trans. Medical Imaging 13(4), 716–724 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Seongeun Eom
    • 1
  • Seungjun Kim
    • 1
  • Vladimir Shin
    • 1
  • Byungha Ahn
    • 1
  1. 1.Department of MechatronicsGwangju Institute of Science and TechnologyGwangjuSouth Korea

Personalised recommendations