Robust Analysis of Silhouettes by Morphological Size Distributions

  • Olivier Barnich
  • Sébastien Jodogne
  • Marc Van Droogenbroeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


We address the topic of real-time analysis and recognition of silhouettes. The method that we propose first produces object features obtained by a new type of morphological operators, which can be seen as an extension of existing granulometric filters, and then insert them into a tailored classification scheme.

Intuitively, given a binary segmented image, our operator produces the set of all the largest rectangles that can be wedged inside any connected component of the image. The latter are obtained by a standard background subtraction technique and morphological filtering. To classify connected components into one of the known object categories, the rectangles of a connected component are submitted to a machine learning algorithm called EXtremely RAndomized trees (Extra-trees). The machine learning algorithm is fed with a static database of silhouettes that contains both positive and negative instances. The whole process, including image processing and rectangle classification, is carried out in real-time.

Finally we evaluate our approach on one of today’s hot topics: the detection of human silhouettes. We discuss experimental results and show that our method is stable and computationally effective. Therefore, we assess that algorithms like ours introduce new ways for the detection of humans in video sequences.


Video Stream Interest Point Negative Instance Robust Analysis Gait Recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37, 151–172 (2000)MATHCrossRefGoogle Scholar
  2. 2.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Madison (WI, USA), vol. 2, pp. 257–263 (2003)Google Scholar
  3. 3.
    Schmid, C., Mohr, R.: Local greyvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 530–535 (1997)CrossRefGoogle Scholar
  4. 4.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Mathes, T., Piater, J.: Robust non-rigid object tracking using point distribution models. In: Proc. of the British Machine Vision Conference, Oxford (UK), pp. 849–858 (2005)Google Scholar
  6. 6.
    Boulgouris, N., Hatzinakos, D., Plataniotis, K.: Gait recognition: a challenging signal processing technology for biometric identification. Ispmag 22, 78–90 (2005)Google Scholar
  7. 7.
    Serra, J.: Image analysis and mathematical morphology. Academic Press, New York (1982)MATHGoogle Scholar
  8. 8.
    Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, p. 193. IEEE Computer Society, Los Alamitos (1997)CrossRefGoogle Scholar
  9. 9.
    Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)CrossRefGoogle Scholar
  10. 10.
    Stauffer, C., Grimson, E.: Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 246–252 (1999)Google Scholar
  11. 11.
    Stauffer, C., Grimson, E.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22, 747–757 (2000)CrossRefGoogle Scholar
  12. 12.
    Power, P., Schoonees, J.: Understanding background mixture models for foreground segmentation. In: Proc. Images and Vision Computing, Auckland, NZ (2002)Google Scholar
  13. 13.
    Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)Google Scholar
  14. 14.
    Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 701–716 (1989)MATHCrossRefGoogle Scholar
  15. 15.
    Bagdanov, A., Worring, M.: Granulometric analysis of document images. In: Proceedings of the International Conference on Pattern Recognition, vol. I, pp. 478–481. IEEE, Los Alamitos (2002)Google Scholar
  16. 16.
    Van Droogenbroeck, M.: Algorithms for openings of binary and label images with rectangular structuring elements. In: Talbot, H., Beare, R. (eds.) Mathematical morphology, pp. 197–207. CSIRO Publishing, Sydney (2002)Google Scholar
  17. 17.
    Hadwiger, H.: Vorlesungen über inhalt, oberfläche and isoperimetric. Springer, Heidelberg (1957)Google Scholar
  18. 18.
    Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning Journal (to appear, 2006), Available for download at:
  19. 19.
    Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego (CA, USA), vol. 1, pp. 34–40 (2005)Google Scholar
  20. 20.
    Breiman, L.: Bagging predictors. Machine Learning 26, 123–140 (1996)Google Scholar
  21. 21.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)MATHCrossRefGoogle Scholar
  22. 22.
    Nene, S., Nayar, S., Murase, H.: Columbia object image library: Coil-100. Technical report (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Olivier Barnich
    • 1
  • Sébastien Jodogne
    • 1
  • Marc Van Droogenbroeck
    • 1
  1. 1.Department of Electricity, Electronics and Computer Science, Institut MontefioreUniversity of LiègeLiègeBelgium

Personalised recommendations