Gabor Feature Based Face Recognition Using Supervised Locality Preserving Projection

  • Zhonglong Zheng
  • Jianmin Zhao
  • Jie Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


This paper introduces a novel Gabor-based supervised locality preserving projection (GSLPP) method for face recognition. Locality preserving projection (LPP) is a recently proposed method for unsupervised linear dimensionality reduction. LPP seeks to preserve the local structure which is usually more significant than the global structure preserved by principal component analysis (PCA) and linear discriminant analysis (LDA). In this paper, we investigate its extension, called supervised locality preserving projection (SLPP), using class labels of data points to enhance its discriminant power in their mapping into a low dimensional space. The GSLPP method, which is robust to variations of illumination and facial expression, applies the SLPP to an augmented Gabor feature vector derived from the Gabor wavelet representation of face images. We performed comparative experiments of various face recognition schemes, including the proposed GSLPP method, principal component analysis (PCA) method, linear discriminant analysis (LDA) method, locality preserving projection method, the combination of Gabor and PCA method (GPCA) and the combination of Gabor and LDA method (GLDA). Experimental results on AR database and CMU PIE database show superior of the novel GSLPP method.


Face Recognition Linear Discriminant Analysis Recognition Rate Face Image Gabor Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)Google Scholar
  2. 2.
    Klock, H., Buhmann, J.: Data visualization by multidimensional scaling: a deterministic annealing approach. Pattern Recognition 33(4), 651–669 (1999)CrossRefGoogle Scholar
  3. 3.
    Belkin, M., Niyogi, P.: Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In: Proc. Conf. Advances in Neural Information Processing System, vol. 15 (2001)Google Scholar
  4. 4.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
  5. 5.
    Barlett, M.S., Ladesand, H.M., Sejnowsky, T.J.: Independent component representations for face recognition. In: Proc. SPIE, vol. 3299, pp. 528–539 (1998)Google Scholar
  6. 6.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  7. 7.
    Tenenbaum, J.B., et al.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  8. 8.
    Zheng, Z., Yang, J.: Extended LLE with Gabor Wavelet for Face Recognition. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS, vol. 3339, pp. 955–960. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    He, X., Niyogi, P.: Locality Preserving Projections. In: Proc. Conf. Advances in Nerual Information Processing Systems (2003)Google Scholar
  10. 10.
    He, X., Yan, S., et al.: Face Recognition Using Laplacianfaces. IEEE trans. on PAMI 27(3), 328–340 (2005)MathSciNetGoogle Scholar
  11. 11.
    Zheng, X., Cai, D., He, X., Ma, W.-Y., Lin, X.: Locality Preserving Clustering for Image Database. In: ACM conference on Multimedia 2004, New York City, October 10-16 (2004)Google Scholar
  12. 12.
    He, X., Yan, S., Hu, Y., Zhang, H.-J.: Learning a Locality Preserving Subspace for Visual Recognition. In: IEEE International Conference on Computer Vision (ICCV 2003), Nice, France (2003)Google Scholar
  13. 13.
    de Ridder, D., Duin, R.P.W.: Locally linear embedding for classification. Technical Report PH-2002-01, Pattern Recogntion Group, Dept.of Imaging Science & Technology, Delft University of Technology, Delft, Netherlands (2002)Google Scholar
  14. 14.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE tran. on PAMI 19(7), 711–721 (1997)Google Scholar
  15. 15.
    Zhao, W., Chellappa, R., Nandhakumar, N.: Empirical Performance Analysis of Linear Discriminant Classifers. In: Proc. Computer Vision and Pattern Recognition, pp. 164–169 (1998)Google Scholar
  16. 16.
    Swets, D.L., Weng, J.: Using Discriminant Eigenfeatures for Image Retrieval. IEEE trans. on PAMI 18(8), 831–836 (1996)Google Scholar
  17. 17.
    Cevikalp, H., Neamtu, M., et al.: Discriminant Common Vectors for Face Recognition. IEEE trans. on PAMI 27(1), 4–13 (2005)Google Scholar
  18. 18.
    Kim, T.K., Kittler, J.: Locally Linear Discriminant Analysis for Multimodally Distributed Classes for Face Recognition with a Single Model Image. IEEE trans. on PAMI 27(3), 318–327 (2005)Google Scholar
  19. 19.
    Yang, J., Frangi, A.F., Yang, J.-y., et al.: KPCA Plus LDA: A complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE trans. on PAMI 27(2) (2005)Google Scholar
  20. 20.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  21. 21.
    Cohen, I., Sebe, N., Cozman, F.G., Cirelo, M.C., Huang, T.S.: Learning Bayesian Network Classifiers for Facial Expression Recognition with both Labeled and Unlabeled data. In: IEEE conference on Computer Vision and Pattern Recognition 2003 (2003)Google Scholar
  22. 22.
    Graf, A.B.A., Smola, A.J., Borer, S.: Classification in a normalized feature space using support vector machines. IEEE trans. on PAMI 14(3), 597–605 (2003)Google Scholar
  23. 23.
    Li, R.-P., Mukaidono, M., Turksen, I.B.: A fuzzy neural network for pattern classification and feature selection. Fuzzy Sets and systems 130, 101–108 (2002)MATHMathSciNetGoogle Scholar
  24. 24.
    Martinez, A.M., Benavente, R.: The AR face database, CVC Tech. Report #24 (1998)Google Scholar
  25. 25.
    Cohen, I., Cozman, F.G., Sebe, N., Cirelo, M.C., Huang, T.S.: Semi-supervised Learning of Classifiers: Theory, Algorithms, and Their application to Human-Computer Interaction. IEEE trans. on PAMI 26(12), 1553–1567 (2004)Google Scholar
  26. 26.
    Min, W., Lu, K., He, X.: Locality preserving projection. Pattern Recognition Journal 37(4), 781–788 (2004)MATHCrossRefGoogle Scholar
  27. 27.
    Donato, G., Bartlett, M.S., Hager, J.C., et al.: Classifying facial actions. IEEE Trans. Pattern Anal. Machine Intell. 21, 974–989 (1999)CrossRefGoogle Scholar
  28. 28.
    Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vis. Res. 20, 847–856 (1980)CrossRefGoogle Scholar
  29. 29.
    Liu, C., Wechsler, H.: A Gabor feature classifier for face recognition. In: Proc. 8th IEEE Int. Conf. Computer Vision, Vancouver, BC, Canada, July 9-12 (2001)Google Scholar
  30. 30.
    Hsu, R.-L., Mohamed, Jain, A.K.: Face Detection in Color Images. IEEE Trans. on PAMI 24, 696–706 (2002)Google Scholar
  31. 31.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. Conf. Computer Vision and Pattern Recognition, Kauai, HI, USA, vol. 1, pp. 511–518 (2001)Google Scholar
  32. 32.
    Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression (PIE) Database. In: Proc. IEEE Int’l. Conf. Automatic Face and Gesture Recognition (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhonglong Zheng
    • 1
  • Jianmin Zhao
    • 1
  • Jie Yang
    • 2
  1. 1.Institute of Information Science and EngineeringZhejiang Normal UniversityJinhua, ZhejiangChina
  2. 2.Institute of Image Processing and Pattern RecognitionShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations