AddCanny: Edge Detector for Video Processing

  • Luis Antón-Canalís
  • Mario Hernández-Tejera
  • Elena Sánchez-Nielsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


In this paper, we present AddCanny, an Anisotropic Diffusion and Dynamic reformulation of the Canny edge detector. The proposal provides two modifications to classical Canny detector. The first one consists of using an anisotropic diffusion filter instead of a Gaussian filter as Canny does in order to obtain better edge detection and location. The second one is the replacement of the hysteresis step by a dynamic threshold process, in order to reduce blinking effect of edges during successive frames and, therefore, generate more stable edges in sequences. Also, a new performance measurement based on the Euclidean Distance Transform to evaluate the consistency of computed edges is proposed. The paper includes experimental evaluations with different video streams that illustrate the advantages of AddCanny compared to classical Canny edge detector.


Video Sequence Edge Detector Binary Image Video Stream Video Processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Averbuch, A., Epstein, B., Rabin, N., Turkel, E.: Edge-Enhancement Postprocessing Using Artificial Dissipation. IEEE Transactions on Image Processing 15(6), 1486–1498 (2006)CrossRefGoogle Scholar
  2. 2.
    Jahne, B.: Digital Image Processing, 4th edn. Springer, Heidelberg (1997) ISBN: 3540240357Google Scholar
  3. 3.
    Black, M.J., Sapiro, G., Marimont, D., Heeger, D.: Robust anisotropic diffusion. IEEE Transactions on Image Processing, Special issue on Partial Differential Equations and Geometry Driven Diffusion in Image Processing and Analysis 7(3), 421–432 (1998)Google Scholar
  4. 4.
    Canny, J.: A Computational approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6) (1986)Google Scholar
  5. 5.
    Demigny, D.: On optimal linear filtering for edge detection. IEEE Transactions on Image Processing 11(7), 728–737 (2002)CrossRefGoogle Scholar
  6. 6.
    Liuand, G., Haralick, R.M.: Two practical issues in Canny’s edge detector implementation. In: Proceedings of 15th International Conference on Pattern Recognition, vol. 3(3-7), pp. 676–678 (September 2000)Google Scholar
  7. 7.
    Paglieroni, D.W.: Distance Transforms. Computer Vision, Graphics and Image Processing: Graphical Models and Image Processing 54, 56–74 (1992)Google Scholar
  8. 8.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  9. 9.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, New Delhi, India, pp. 839–846 (1998)Google Scholar
  10. 10.
    Zadeh, L.A., et al.: Fuzzy sets and their applications to cognitive and decision processes. Academic Press, London (1975)MATHGoogle Scholar
  11. 11.
    Ge, J., Luo, Y., Xiao, D.: Adaptive hysteresis thresholding based pedestrian detection in nighttime using a normal camera. In: IEEE International Conference on Vehicular Electronics and Safety, pp. 46–51 (October 14-16, 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luis Antón-Canalís
    • 1
  • Mario Hernández-Tejera
    • 1
  • Elena Sánchez-Nielsen
    • 2
  1. 1.Institute for Intelligent Systems and Numerical Applications in EngineeringIUSIANI. University of Las Palmas de Gran Canaria (ULPGC)Las PalmasSpain
  2. 2.Departamento de Estadística, Investigación Operativa y ComputaciónUniversity of La LagunaS/C TenerifeSpain

Personalised recommendations