Complexity Scalability in Motion-Compensated Wavelet-Based Video Coding

  • T. Clerckx
  • A. Munteanu
  • J. Cornelis
  • P. Schelkens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


Scalable wavelet-based video codecs based on motion-compensated temporal filtering (MCTF) require complexity scalability to cope with the growing heterogeneity of devices on which video has to be processed. The computational and memory complexity of two spatial-domain (SD) MCTF and in-band (IB) MCTF video codec instantiations are examined in this paper. Comparisons in terms of complexity versus performance are presented for both types of codecs. Some of the trade-offs between complexity and coding performance are analyzed and it is indicated how complexity scalability can be achieved in such video-codecs. Furthermore, a new approach is presented to obtain complexity scalability in IBMCTF video coding, by targeting the complexity of the complete-to-overcomplete discrete wavelet transform at the cost of a limited and controllable penalty on the overall coding performance.


Discrete Wavelet Transform Discrete Wavelet Video Code Complexity Scalability Scalable Video Code 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Requirements and Applications for Scalable Video Coding, ISO/IEC JTC1/SC29/WG11, Gold Coast (October 2003)Google Scholar
  2. 2.
    Ohm, J.-R.: Three-dimensional subband coding with motion compensation. IEEE Transactions on Image Processing 3, 559–571 (1994)CrossRefGoogle Scholar
  3. 3.
    Choi, S.-J., Woods, J.W.: Motion-compensated 3-D subband coding of video. IEEE Transactions on Image Processing 8, 155–167 (1999)CrossRefGoogle Scholar
  4. 4.
    Naveen, T., Woods, J.W.: Motion Compensated Multiresolution Transmission of High Definition Video. IEEE Transactions on Circuits and Systems for Video Technology 4, 29–41 (1994)CrossRefGoogle Scholar
  5. 5.
    Taubman, D., Zakhor, A.: Multirate 3-D Subband Coding of Video. IEEE Transactions on Image Processing 3, 572–588 (1994)CrossRefGoogle Scholar
  6. 6.
    Wiegand, T., Sullivan, G.J., Bjontegaard, G., Ajay, L.: Overview of the H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and Systems for Video Technology 13, 560–576 (2003)CrossRefGoogle Scholar
  7. 7.
    Schelkens, P., Andreopoulos, Y., Barbarien, J., Clerckx, T., Verdicchio, F., Munteanu, A., Van der Schaar, M.: A comparative study of scalable video coding schemes utilizing wavelet technology. In: Proceedings of SPIE Photonics East, Wavelet applications in industrial processing, Providence, vol. 5266, pp. 147–156 (2004)Google Scholar
  8. 8.
    Turaga, D.S., van der Schaar, M., Pesquet-Popescu, B.: Reduced complexity spatio-temporal scalable motion compensated wavelet video encoding. IEEE Transactions on Circuits and Systems for Video Technology 15(8), 982–993 (2005)CrossRefGoogle Scholar
  9. 9.
    Andreopoulos, I., Barbarien, J., Verdicchio, F., Munteanu, A., van der Schaar, M., Cornelis, J., Schelkens, P.: Response to Call for Evidence on Scalable Video Coding, ISO/IEC JTC1/SC29/WG11 (MPEG), Trondheim, Norway, MPEG Report M9911, July 20-25 (2003)Google Scholar
  10. 10.
    Andreopoulos, I., Munteanu, A., Barbarien, J., van der Schaar, M., Cornelis, J., Schelkens, P.: In-band motion compensated temporal filtering. Signal Processing: Image Communication (special issue on Subband/Wavelet Interframe Video Coding) 19, 653–673 (2004)Google Scholar
  11. 11.
    Andreopoulos, I., Munteanu, A., Van der Auwera, G., Schelkens, P., Cornelis, J.: Complete-to-overcomplete discrete wavelet transforms: theory and applications. IEEE Transactions on Signal Processing 53, 1398–1412 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Flierl, M., Girod, B.: Video Coding with Motion-Compensated Lifted Wavelet Transforms. Signal Processing: Image Communication 19, 561–575 (2004)CrossRefGoogle Scholar
  13. 13.
    Pesquet-Popescu, B., Bottreau, V.: Three-Dimensional Lifting Schemes For Motion Compensated Video Compression. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, pp. 1793–1796 (2001)Google Scholar
  14. 14.
    Mallat, S.G.: A wavelet tour of signal processing. Academic Press, San Diego (1998)MATHGoogle Scholar
  15. 15.
    Shensa, M.J.: The discrete wavelet transform: Wedding the A Trous and Mallat Algorithms. IEEE Transactions on Signal Processing 40, 2464–2482 (1992)MATHCrossRefGoogle Scholar
  16. 16.
    Park, H.-W., Kim, H.-S.: Motion Estimation Using Low-Band-Shift Method for Wavelet-Based Moving-Picture Coding. IEEE Transactions on Image Processing 9, 577–587 (2000)CrossRefGoogle Scholar
  17. 17.
    Van der Auwera, G., Munteanu, A., Schelkens, P., Cornelis, J.: Bottom-up motion compensated prediction in the wavelet domain for spatially scalable video coding. IEE Electronics Letters 38, 1251–1253 (2002)CrossRefGoogle Scholar
  18. 18.
    Munteanu, A.: Wavelet image coding and multiscale edge detection. Department of Electronics and Information Processing (ETRO). Vrije Universiteit Brussel, Brussel (2003)Google Scholar
  19. 19.
    Schelkens, P., Munteanu, A., Barbarien, J., Galca, M., Giro i Nieto, X., Cornelis, J.: Wavelet Coding of Volumetric Medical Datasets. IEEE Transactions on Medical Imaging 22, 441–458 (2003)CrossRefGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    Andreopoulos, I., Munteanu, A., Van der Auwera, G., Cornelis, J., Schelkens, P.: Single-rate calculation of overcomplete discrete wavelet transforms for scalable coding applications. Signal Processing 85, 1103–1124 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • T. Clerckx
    • 1
  • A. Munteanu
    • 1
  • J. Cornelis
    • 1
  • P. Schelkens
    • 1
  1. 1.Dept. of Electronics and InformaticsVrije Universiteit Brussel – Interdisciplinary institute for BroadBand TechnologyBrusselsBelgium

Personalised recommendations