A Charged Active Contour Based on Electrostatics

  • Ronghua Yang
  • Majid Mirmehdi
  • Xianghua Xie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


We propose a novel active contour model by incorporating particle based electrostatic interactions into the geometric active contour framework. The proposed active contour, embedded in level sets, propagates under the joint influence of a boundary attraction force and a boundary competition force. Unlike other contour models, the proposed vector field dynamically adapts by updating itself when a contour reaches a boundary. The model is then more invariant to initialisation and possesses better convergence abilities. Analytical and comparative results are presented on synthetic and real images.


Active Contour Object Boundary Active Contour Model Strong Edge Weak Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kass, P., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. IJCV 1, 321–331 (1988)CrossRefGoogle Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: ICCV, pp. 694–699 (1995)Google Scholar
  3. 3.
    Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE T-PAMI 18, 884–900 (1996)Google Scholar
  4. 4.
    Paragios, N., Deriche, R.: Geodesic active regions for supervised texture segmentation. In: ICCV, pp. 926–932 (1999)Google Scholar
  5. 5.
    Xie, X., Mirmehdi, M.: RAGS: Region-aided geometric snake. IEEE T-IP 13, 640–652 (2004)MathSciNetGoogle Scholar
  6. 6.
    Xu, C., Prince, J.: Gradient vector flow: a new external force for snakes. In: CVPR, pp. 66–71 (1997)Google Scholar
  7. 7.
    Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient vector flow fast geodesic active contours. IEEE T-PAMI 26, 402–407 (2004)Google Scholar
  8. 8.
    Jalba, A., Wilkinson, M., Roerdink, J.: CPM: A deformable model for shape recovery and segmentation based on charged particles. IEEE T-PAMI 26, 1320–1335 (2004)Google Scholar
  9. 9.
    Sethian, J.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science. CUP (1996)Google Scholar
  10. 10.
    Adalsteinsson, D., Sethian, J.: The fast construction of extension velocities in level set methods. J. Comp. Phy. 148, 2–22 (1998)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numerische Mathematik 66, 1–31 (1993)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hockney, R., Eastwood, J.: Computer Simulation Using Particles. Taylor and Francis, Abington (1988)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ronghua Yang
    • 1
  • Majid Mirmehdi
    • 1
  • Xianghua Xie
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK

Personalised recommendations