Skip to main content

Non Orthogonal Component Analysis: Application to Anomaly Detection

  • Conference paper
Book cover Advanced Concepts for Intelligent Vision Systems (ACIVS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4179))

Abstract

Independent Component Analysis (ICA) has shown success in blind source separation. Its applications to remotely sensed images have been investigated recently. In this approach, a Linear Spectral Mixture (LSM) model is used to characterize spectral data. This model and the associated linear unmixing algorithms are based on the assumption that the spectrum for a given pixel in an image is a linear combination of the end-member spectra. The assumption that the abundances are mutually statistically independent random sources requires the separating matrix to be unitary. This paper considers a new approach, the Non Orthogonal Component Analysis (NOCA), which enables to relax this assumption. The experimental results demonstrate that the proposed NOCA provides a more effective technique for anomaly detection in hyperspectral imagery than the ICA approach. In particular, we highlight the fact that the difference between the performances of the two approaches increases when the number of bands decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J., Smith, M., Gillespie, A.: Image spectroscopy: Interpretation based on spectral mixture analysis. In: Pieters, C., Englert, P. (eds.) Remote Geocheminal Analysis: Elemental and Mineralogical Composition, pp. 145–166. Cambridge Univ. Press, Cambridge (1993)

    Google Scholar 

  2. Smith, M., Adams, J., Sabol, D.: Spectral mixture analysis - new strategies for the analysis of multispectral data. In: Hill, J., Mergier, J. (eds.) Image Spectroscopy - A Tool for Environmental Observations, pp. 125–143. ECSC, EEC, EAEC, Brussels and Luxembourg, Belgium (1994)

    Chapter  Google Scholar 

  3. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Proc. Mag., 29–43 (January 2002)

    Google Scholar 

  4. Amari, S.-I., Cichocki, A.: In: Adaptive Blind Signal and Image Processing. J. Wiley and Sons (eds.). Wiley, New York (2002)

    Google Scholar 

  5. Comon, P.: Independent component analysis, a new concept? IEEE Trans. Signal Processing 36, 287–314 (1994)

    MATH  Google Scholar 

  6. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comput. 9, 1483–1492 (1997)

    Article  Google Scholar 

  7. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent sources: A deflation approach. Signal Process. 45, 59–83 (1995)

    Article  Google Scholar 

  8. Chang, C.-I., Heinz, D.: Subpixel spectral detection for remotely sensed images. IEEE Trans. Geosci. Remote Sensing 38, 1144–1159 (2000)

    Article  Google Scholar 

  9. Ren, H., Chang, C.-I.: A generalized othogonal subspace projection approach to unsupervised multispectral image classification. IEEE Trans. Geosci. Remote Sensing 38, 2515–2528 (2000)

    Article  Google Scholar 

  10. Cover, T., Thomas, J.: Elements of information theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  11. Robey, F.C., Fuhrmann, D.R., Kelly, E.J., Nitzberg, R.: A cfar adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst. 28(1), 208–218 (1992)

    Article  Google Scholar 

  12. Chang, C.-I., Chiang, S.-S., Smith, J.A., Ginsberg, I.W.: Linear spectral random mixture analysis for hyperspectral imagery. IEEE Trans. Geosci. Remote Sensing 40(2), 375–392 (2002)

    Article  Google Scholar 

  13. Papadias, C.: Globally convergent blind source separation based on a multiuser kurtisis maximization criterion. IEEE Trans. Signal Processing 48(10), 3508–3519 (2000)

    Article  MathSciNet  Google Scholar 

  14. Cardoso, J.-F., Laheld, B.: Equivariant adaptive source separation. IEEE Trans. Signal Processing 44(12), 3017–3030 (1996)

    Article  Google Scholar 

  15. Chang, C.: In: Hyperspectral Imaging, Academic, K. (ed.), Plenim (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaucel, JM., Guillaume, M., Bourennane, S. (2006). Non Orthogonal Component Analysis: Application to Anomaly Detection. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2006. Lecture Notes in Computer Science, vol 4179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864349_109

Download citation

  • DOI: https://doi.org/10.1007/11864349_109

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44630-9

  • Online ISBN: 978-3-540-44632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics