An Approach to the Recognition of Informational Traffic Signs Based on 2-D Homography and SVMs

  • A. Vázquez-Reina
  • R. J. López-Sastre
  • P. Siegmann
  • S. Lafuente-Arroyo
  • H. Gómez-Moreno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4179)


A fast method for the recognition and classification of informational traffic signs is presented in this paper. The aim is to provide an efficient framework which could be easily used in inventory and guidance systems. The process consists of several steps which include image segmentation, sign detection and reorientation, and finally traffic sign recognition. In a first stage, a static HSI colour segmentation is performed so that possible traffic signs can be easily isolated from the rest of the scene; secondly, shape classification is carried out so as to detect square blobs from the segmented image; next, each object is reoriented through the use of a homography transformation matrix and its potential axial deformation is corrected. Finally a recursive adaptive segmentation and a SVM-based recognition framework allow us to extract each possible pictogram, icon or symbol and classify the type of the traffic sign via a voting-scheme.


Traffic Sign Intelligent Transportation System Road Sign Shape Classification Luminance Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maldonado-Bascón, S., Lafuente-Arroyo, S., Gil-Jiménez, P., Gómez-Moreno, H., López Ferreras, F.: Road-Sign Detection and Recognition based on Support Vector Machines. IEEE Transactions on Intelligent Transportation Systems (submitted)Google Scholar
  2. 2.
    Wu, W., Chen, X., Yang, J.: Detection of Text on Road Signs From Video. IEEE Trans. Intelligent Transportation Systems 6(4), 378–390 (2005)CrossRefGoogle Scholar
  3. 3.
    Chen, X., Yang, J., Zhang, J., Waibel, A.: Automatic Detection and Recognition of Signs From Natural Scenes. IEEE Trans. Image Processing 13(1), 87–89 (2004)CrossRefGoogle Scholar
  4. 4.
    Haritaoglu, E.D., Haritaoglu, I.: Real time image enchancement and segmentation for sign/text detection. In: Proc. Int. Conf. Image Processing (ICIP), Barcelona, Spain, vol. III, pp. 993–996Google Scholar
  5. 5.
    Paclik, P., Novovicova, J., Somol, P., Pudill, P.: Road sign classification using the laplace kernel classifier. Pattern Recognition Letters 21, 1165–1173 (2000)MATHCrossRefGoogle Scholar
  6. 6.
    Miura, J., Kanda, T., Shirai, Y.: An active vision system for real-time traffic sign recognition. In: Proc. 2000 Int. Vehicles Symposium, pp. 52–57 (2000)Google Scholar
  7. 7.
    Shirvaikar, M.V.: Automatic detection and interpretation of road signs. In: Proc. of the Thirty-Sixth Southeastern Symposium on System Theory, pp. 413–416 (2004)Google Scholar
  8. 8.
    Zin, T.T., Hama, H.: Robust road sign recognition using standard deviation. In: 7th International IEEE Conference on Intelligent Transportation Systems, pp. 429–434 (2004)Google Scholar
  9. 9.
    de la Escalera, A., Armingol, J.M., Pastor, J.M., Rodriguez, F.J.: Intelligent Transportation Systems. IEEE Transaction 5(2), 57–68 (2004)Google Scholar
  10. 10.
    Lafuente-Arroyo, S., Gil-Jiménez, P., Maldonado-Bascón, R.: Traffic sign shape classification evaluation evaluation I: SVM using distance to borders. In: Proc. IEEE Intelligent Vehicles Symposium, Las Vegas, USA (2005)Google Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  12. 12.
    Gil-Jiménez, P., Lafuente-Arroyo, S., Gomez-Moreno, H., López Ferreras, F., Maldonado-Bascón, S.: Traffic sign shape classification evaluation II: FFT applied to the signature of blobs. In: Proc. IEEE Int. Vehicles Symposium, Las Vegas, USA (2005)Google Scholar
  13. 13.
    Johnson, G.M., Fairchild, M.D.: A top down description of S-CIELAB and CIEDE 2000. Color Research and Application 28, 425–435 (2003)CrossRefGoogle Scholar
  14. 14.
    Connolly, C., Fleiss, T.: Image Processing. IEEE Transactions on Image Processing 6(7), 1046–1048 (1997)CrossRefGoogle Scholar
  15. 15.
    Vapnik, V.: The nature of Statistical Learning Theory. Springer, New York (1995)MATHGoogle Scholar
  16. 16.
    Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1998)MATHGoogle Scholar
  17. 17.
    Boletín Oficial del Estado Español, Real Decreto 1428/2003, núm 306Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Vázquez-Reina
    • 1
  • R. J. López-Sastre
    • 1
  • P. Siegmann
    • 1
  • S. Lafuente-Arroyo
    • 1
  • H. Gómez-Moreno
    • 1
  1. 1.Department of Signal Theory and CommunicationsUniversidad de Alcalá, Escuela Politécnica SuperiorAlcalá de HenaresSpain

Personalised recommendations