Fast Computation by Population Protocols with a Leader

  • Dana Angluin
  • James Aspnes
  • David Eisenstat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4167)


Fast algorithms are presented for performing computations in a probabilistic population model. This is a variant of the standard population protocol model—in which finite-state agents interact in pairs under the control of an adversary scheduler—where all pairs are equally likely to be chosen for each interaction. It is shown that when a unique leader agent is provided in the initial population, the population can simulate a virtual register machine in which standard arithmetic operations like comparison, addition, subtraction, and multiplication and division by constants can be simulated in O(n log4 n) interactions with high probability. Applications include a reduction of the cost of computing a semilinear predicate to O(n log4 n) interactions from the previously best-known bound of O(n 2 logn) interactions and simulation of a LOGSPACE Turing machine using the same O(n log4 n) interactions per step. These bounds on interactions translate into O(log4 n) time per step in a natural parallel model in which each agent participates in an expected Θ(1) interactions per time unit. The central method is the extensive use of epidemics to propagate information from and to the leader, combined with an epidemic-based phase clock used to detect when these epidemics are likely to be complete.


Turing Machine Fast Computation Boolean Variable Leader Election Chemical Master Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Urn automata. Technical Report YALEU/DCS/TR-1280, Yale University Department of Computer Science (November 2003)Google Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: PODC 2004: Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, pp. 290–299. ACM Press, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)CrossRefGoogle Scholar
  5. 5.
    Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: PODC 2006 (July 2006) (to appear)Google Scholar
  6. 6.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: On the power of anonymous one-way communication. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 396–411. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, pp. 103–117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in mobile networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 37–50. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. In: Toueg, S., Kirousis, L.M., Spirakis, P.G. (eds.) WDAG 1991. LNCS, vol. 579, pp. 71–79. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  10. 10.
    Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases, 2nd edn. Charles Griffin & Co., London and High Wycombe (1975)MATHGoogle Scholar
  11. 11.
    Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal multicast. ACM Trans. Comput. Syst. 17(2), 41–88 (1999)CrossRefGoogle Scholar
  12. 12.
    Daley, D.J., Kendall, D.G.: Stochastic rumours. Journal of the Institute of Mathematics and its Applications 1, 42–55 (1965)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Daliot, A., Dolev, D., Parnas, H.: Self-stabilizing pulse synchronization inspired by biological pacemaker networks. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 32–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die: Making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed systems. Wuhan University Journal of Natural Sciences 6(1–2), 72–82 (2001); Also appears as Yale Technical Report TR–1207 (January 2001)CrossRefGoogle Scholar
  16. 16.
    Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of Byzantine faults. Journal of the ACM 51(5), 780–799 (2004)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry A 104, 1876–1880 (2000)CrossRefGoogle Scholar
  18. 18.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  19. 19.
    Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)CrossRefGoogle Scholar
  20. 20.
    Herman, T.: Phase clocks for transient fault repair. IEEE Transactions on Parallel and Distributed Systems 11(10), 1048–1057 (2000)CrossRefGoogle Scholar
  21. 21.
    Kamath, A.P., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and the satisfiability threshold conjecture. Random Structures and Algorithms 7, 59–80 (1995)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs (1967)MATHGoogle Scholar
  23. 23.
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes-Rendus du I Congrès de Mathématiciens des Pays Slaves, Warszawa, pp. 92–101 (1929)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dana Angluin
    • 1
  • James Aspnes
    • 1
  • David Eisenstat
    • 2
  1. 1.Department of Computer ScienceYale University 
  2. 2.Department of Computer SciencePrinceton University 

Personalised recommendations