Distributed Approximation Algorithms in Unit-Disk Graphs

  • A. Czygrinow
  • M. Hańćkowiak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4167)


We will give distributed approximation schemes for the maximum matching problem and the minimum connected dominating set problem in unit-disk graphs. The algorithms are deterministic, run in a poly-logarithmic number of rounds in the message passing model and the approximation error can be made O(1/log k |G|) where |G| is the order of the graph and k is a positive integer.


Maximum Match Polynomial Time Approximation Scheme Unit Disk Graph Auxiliary Graph Message Passing Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AGLP89]
    Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network Decomposition and Locality in Distributed Computation. In: Proc. 30th IEEE Symp. on Foundations of Computer Science, pp. 364–369 (1989)Google Scholar
  2. [CHLWD03]
    Cheng, X., Huang, X., Li, D., Wu, W., Du, D.-Z.: Polynomial-time approximation scheme for minimum connected dominating set in ad hoc wireless networks. Networks 42(4), 202–208 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. [CH06]
    Czygrinow, A., Hańćkowiak, M.: Distributed algorithms for weighted problems in sparse graphs. Journal of Discrete Algorithms (in press, 2006)Google Scholar
  4. [CHS06]
    Czygrinow, A., Hańćkowiak, M., Szymańska, E.: Distributed approximation algorithms for planar graphs. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. [D97]
    Diestel, R.: Graph Theory. Springer, New York (1997)MATHGoogle Scholar
  6. [DW04]
    Dai, F., Wu, J.: An Extended Localized Algorithm for Connected Dominating Set Formation in Ad Hoc Wireless Networks. IEEE Transactions on Parallel and Distributed Systems 15(10), 908–920 (2004)CrossRefGoogle Scholar
  7. [DPRS03]
    Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast Distributed Algorithms for (Weakly) Connected Dominating Sets and Linear-Size Skeletons. In: Proc. of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 717–724 (2003)Google Scholar
  8. [GGHZZ01]
    Gao, J., Guibas, L., Hershberger, J., Zhang, L., Zhu, A.: Discrete mobile centers. In: Proc of the 17th annual Symposium on Computational Geometry (SCG), pp. 188–196 (2001)Google Scholar
  9. [KMW05]
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the Locality of Bounded Growth. In: 24th ACM Symposium on the Principles of Distributed Computing (PODC), Las Vegas, Nevada, USA, pp. 60–68 (2005)Google Scholar
  10. [KMNW05a]
    Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast Deterministic Distributed Maximal Independent Set Computation on Growth-Bounded Graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 273–287. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [KMNW05b]
    Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Local Approximation Schemes for Ad Hoc and Sensor Networks. In: 3rd ACM Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), Cologne, Germany, pp. 97–103 (2005)Google Scholar
  12. [L82]
    Lichtenstein, D.: Planar Formulae and Their Uses. SIAM Journal of Computing 11(2), 329–343 (1998)CrossRefMathSciNetGoogle Scholar
  13. [L92]
    Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)MATHCrossRefMathSciNetGoogle Scholar
  14. [NH05]
    Nieberg, T., Hurink, J.L.: A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 296–306. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. [PR01]
    Panconesi, A., Rizzi, R.: Some Simple Distributed Algorithms for Sparse Networks. Distributed Computing 14, 97–100 (2001)CrossRefGoogle Scholar
  16. [P00]
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Czygrinow
    • 1
  • M. Hańćkowiak
    • 2
  1. 1.Department of Mathematics and StatisticsArizona State UniversityTempeUSA
  2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations