Skip to main content

Subconsensus Tasks: Renaming Is Weaker Than Set Agreement

  • Conference paper
Distributed Computing (DISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4167))

Included in the following conference series:

Abstract

We consider the the relative power of two important synchronization problems: set agreement and renaming. We show that renaming is strictly weaker than set agreement, in a round-by-round model of computation. We introduce new techniques, including previously unknown connections between properties of manifolds and computation, as well as novel “symmetry-breaking” constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. J. ACM 37(3), 524–548 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attiya, H., Rajsbaum, S.: The combinatorial structure of wait-free solvable tasks. SIAM J. Comput. 31(4), 1286–1313 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous computations. In: Proceedings of the 1993 ACM Symposium on Theory of Computing, pp. 206–215 (May 1993)

    Google Scholar 

  4. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC 1993: Proceedings of the twelfth annual ACM symposium on Principles of distributed computing, pp. 41–51. ACM Press, New York (1993)

    Chapter  Google Scholar 

  5. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-free computation (extended abstract). In: PODC 1997: Proceedings of the sixteenth annual ACM symposium on Principles of distributed computing, pp. 189–198. ACM Press, New York (1997)

    Chapter  Google Scholar 

  6. Chaudhuri, S.: Agreement is harder than consensus: Set consensus problems in totally asynchronous systems. In: Proceedings Of The Ninth Annual ACM Symposium On Principles of Distributed Computing, pp. 311–234 (August 1990)

    Google Scholar 

  7. Fischer, M., Lynch, N.A., Paterson, M.S.: Impossibility of distributed commit with one faulty process. Journal of the ACM 32(2) (April 1985)

    Google Scholar 

  8. Gafni, E.: Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony. In: PODC 1998: Proceedings of the seventeenth annual ACM symposium on Principles of distributed computing, pp. 143–152. ACM Press, New York (1998)

    Chapter  Google Scholar 

  9. Herlihy, M., Shavit, N.: The asynchronous computability theorem for t-resilient tasks. In: STOC 1993: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pp. 111–120. ACM Press, New York (1993)

    Chapter  Google Scholar 

  10. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Herlihy, M.P.: Wait-free synchronization. ACM Transactions On Programming Languages and Systems 13(1), 123–149 (1991)

    Article  Google Scholar 

  12. Munkres, J.R.: Elements Of Algebraic Topology. Addison Wesley, Reading (1984)

    MATH  Google Scholar 

  13. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of public knowledge. In: Proceedings of the 1993 ACM Symposium on Theory of Computing, pp. 101–110 (May 1993)

    Google Scholar 

  14. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gafni, E., Rajsbaum, S., Herlihy, M. (2006). Subconsensus Tasks: Renaming Is Weaker Than Set Agreement. In: Dolev, S. (eds) Distributed Computing. DISC 2006. Lecture Notes in Computer Science, vol 4167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864219_23

Download citation

  • DOI: https://doi.org/10.1007/11864219_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44624-8

  • Online ISBN: 978-3-540-44627-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics