Common Intervals and Symmetric Difference in a Model-Free Phylogenomics, with an Application to Streptophyte Evolution

  • Zaky Adam
  • Monique Turmel
  • Claude Lemieux
  • David Sankoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4205)


The common intervals of two permutations on n elements are the subsets of terms contiguous in both permutations. They constitute the most basic representation of conserved local order. We use d, the size of the symmetric difference (the complement of the common intervals) of the two subsets of 2{ 1, ⋯ ,n} thus determined by two permutations, as an evolutionary distance between the gene orders represented by the permutations. We consider the Steiner Tree problem in the space (2{ 1, ⋯ ,n},d) as the basis for constructing phylogenetic trees, including ancestral gene orders. We extend this to genomes with unequal gene content and to genomes containing gene families. Applied to streptophyte phylogeny, our method does not support the positioning of the complex algae Charales as a sister group to the land plants.


Gene Order Binary Tree Land Plant Chloroplast Genome Steiner Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–14. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bergeron, A., Heber, S., Stoye, J.: Common intervals and sorting by reversal: a marriage of necessity. Bioinformatics 18, S54–S63 (2002)Google Scholar
  4. 4.
    Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 69–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Booth, K., Luekar, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Research 12, 26–36 (2002)Google Scholar
  7. 7.
    Caprara, A.: On the practical solution of the reversal median problem. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 238–251. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Fitch, W.: Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology 20, 406–416 (1971)CrossRefGoogle Scholar
  9. 9.
    Hartigan, J.A.: Minimum mutation fits to a given tree. Biometrics 29, 53–65 (1973)CrossRefGoogle Scholar
  10. 10.
    Lemieux, C., Otis, C., Turmel, M.: Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403, 649–652 (2000)CrossRefGoogle Scholar
  11. 11.
    Meidanis, J., Munuera, E.G.: A theory for the consecutive ones property. In: Ziviani, N., Baeza-Yates, R. (eds.) Proceedings of WSP 1997 - Third South American Workshop on String Processing, pp. 194–202. Carleton University Press, Ottawa (1996)Google Scholar
  12. 12.
    Nadeau, J.H., Taylor, B.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984)CrossRefGoogle Scholar
  13. 13.
    Ohyama, K., Fukuzawa, H., Kohchi, T., et al.: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322, 572–574 (1986)CrossRefGoogle Scholar
  14. 14.
    Parida, L.: A PQ tree-based framework for reconstructing common ancestors under inversions and transpositions. IBM Research Report RC 23837 (2005)Google Scholar
  15. 15.
    Sankoff, D., Blanchette, M.: The median problem for breakpoints in comparative genomics. In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 251–263. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Sankoff, D., Bryant, D., Deneault, M., Lang, F., Burger, G.: Early eukaryote evolution based on mitochondrial gene order breakpoints. Journal of Computational Biology 7, 521–535 (2000)CrossRefGoogle Scholar
  17. 17.
    Sankoff, D., Rousseau, P.: Locating the vertices of a Steiner tree in an arbitrary metric space. Mathematical Programming 9, 240–246 (1975)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sankoff, D., Sundaram, G., Kececioglu, J.: Steiner points in the space of genome rearrangements. International Journal of the Foundations of Computer Science 7, 1–9 (1996)MATHCrossRefGoogle Scholar
  19. 19.
    Siepel, A., Moret, B.: Finding an optimal inversion median: Experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Tang, J., Moret, B.M.E.: Phylogenetic reconstruction from gene-rearrangement data with unequal gene content. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 37–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Telles, G.P., Meidanis, J.: Building PQR trees in almost-linear time. In: Feofiloff, P., de Figueiredo, C.M.H., Wakabayashi, Y. (eds.) Proceedings of GRACO 2005. Electronic Notes in Discrete Mathematics, vol. 19, pp. 1–416 (2005)Google Scholar
  22. 22.
    Turmel, M., Otis, C., Lemieux, C.: The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc. Natl. Acad. Sci. USA 99, 11275–11280 (2002)CrossRefGoogle Scholar
  23. 23.
    Turmel, M., Otis, C., Lemieux, C.: The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biology 3, 22 (2005)CrossRefGoogle Scholar
  24. 24.
    Turmel, M., Otis, C., Lemieux, C.: The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol. Biol. Evol. 23, 1324–1338 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zaky Adam
    • 1
  • Monique Turmel
    • 2
  • Claude Lemieux
    • 2
  • David Sankoff
    • 1
  1. 1.School of Information Technology and Engineering, and Department of Mathematics and StatisticsUniversity of OttawaOttawaCanada
  2. 2.Département de biochimie et de microbiologieUniversité LavalQuébecCanada

Personalised recommendations