Identifiability Issues in Phylogeny-Based Detection of Horizontal Gene Transfer

  • Cuong Than
  • Derek Ruths
  • Hideki Innan
  • Luay Nakhleh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4205)


Prokaryotic organisms share genetic material across species boundaries by means of a process known as horizontal gene transfer (HGT). Detecting this process bears great significance on understanding prokaryotic genome diversification and unraveling their complexities. Phylogeny-based detection of HGT is one of the most commonly used approaches for this task, and is based on the fundamental fact that HGT may cause gene trees to disagree with one another, as well as with the species phylogeny. Hence, methods that adopt this approach compare gene and species trees, and infer a set of HGT events to reconcile the differences among these trees.

In this paper, we address some of the identifiability issues that face phylogeny-based detection of HGT. In particular, we show the effect of inaccuracies in the reconstructed (species and gene) trees on inferring the correct number of HGT events. Further, we show that a large number of maximally parsimonious HGT scenarios may exist. These results indicate that accurate detection of HGT requires accurate reconstruction of individual trees, and necessitates the search for more than a single scenario to explain gene tree disagreements. Finally, we show that disagreements among trees may be a result of not only HGT, but also lineage sorting, and make initial progress on incorporating HGT into the coalescent model, so as to stochastically distinguish between the two and make an accurate reconciliation. This contribution is very significant, particularly when analyzing closely related organisms.


Gene Tree Horizontal Gene Transfer Lateral Gene Transfer Neighbor Join Phylogenetic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Addario-Berry, L., Hallett, M.T., Lagergren, J.: Towards identifying lateral gene transfer events. In: Proc. 8th Pacific Symp. on Biocomputing (PSB 2003), pp. 279–290 (2003)Google Scholar
  2. 2.
    Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics, 1–15 (in press, 2005)Google Scholar
  3. 3.
    Daubin, V., Moran, N.A., Ochman, H.: Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832 (2003)CrossRefGoogle Scholar
  4. 4.
    Doolittle, W.F., Boucher, Y., Nesbo, C.L., Douady, C.J., Andersson, J.O., Roger, A.J.: How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil. Trans. R. Soc. Lond. B. Biol. Sci. 358, 39–57 (2003)CrossRefGoogle Scholar
  5. 5.
    Paulsen, I.T., et al.: Role of mobile DNA in the evolution of Vacomycin-resistant Enterococcus faecalis. Science 299(5615), 2071–2074 (2003)CrossRefGoogle Scholar
  6. 6.
    Ewens, W.J.: Mathematical Population Genetics. Springer, Berlin (1979)MATHGoogle Scholar
  7. 7.
    Hallett, M.T., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proc. 5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2001), pp. 149–156. ACM Press, New York (2001)Google Scholar
  8. 8.
    Hudson, R.R.: Testing the constant-rate neutral allele model with protein sequence data. Evolution 37, 203–217 (1983)CrossRefGoogle Scholar
  9. 9.
    Hudson, R.R.: Properties of the neutral allele model with intergenic recombination. Theor. Popul. Biol. 23, 183–201 (1983)MATHCrossRefGoogle Scholar
  10. 10.
    Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61, 893–903 (1969)Google Scholar
  11. 11.
    Kingman, J.F.C.: The coalescent. Stochast. Proc. Appl. 13, 235–248 (1982)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kunin, V., Goldovsky, L., Darzentas, N., Ouzounis, C.A.: The net of life: reconstructing the microbial phylogenetic network. Genome Research 15, 954–959 (2005)CrossRefGoogle Scholar
  13. 13.
    Lerat, E., Daubin, V., Moran, N.A.: From gene trees to organismal phylogeny in prokaryotes: The case of the γ-proteobacteria. PLoS Biology 1(1), 1–9 (2003)CrossRefGoogle Scholar
  14. 14.
    Maddison, W.P.: Gene trees in species trees. Systematic Biology 46(3), 523–536 (1997)CrossRefGoogle Scholar
  15. 15.
    Makarenkov, V.: T-REX: Reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics 17(7), 664–668 (2001)CrossRefGoogle Scholar
  16. 16.
    Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)CrossRefGoogle Scholar
  17. 17.
    Nakhleh, L., Ruths, D., Wang, L.S.: RIATA-HGT: A fast and accurate heuristic for reconstructing horizontal gene transfer. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 84–93. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species–theory and practice. In: Proc. 8th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2004), pp. 337–346 (2004)Google Scholar
  19. 19.
    Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299–304 (2000)CrossRefGoogle Scholar
  20. 20.
    Rambaut, A., Grassly, N.C.: Seq-gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comp. Appl. Biosci. 13, 235–238 (1997)Google Scholar
  21. 21.
    Rosenberg, N.: The probability of topological concordance of gene trees and species tree. Theoretical Population Biology 61, 225–247 (2002)MATHCrossRefGoogle Scholar
  22. 22.
    Rosenberg, N.A.: Gene genealogies. In: Fox, C.W., Wolf, J.B. (eds.) Evolutionary Genetics: Concepts and Case Studies, ch. 15. Oxford University Press, Oxford (2005)Google Scholar
  23. 23.
    Ruths, D., Nakhleh, L.: Techniques for assessing phylogenetic branch support: A performance study. In: Proceedings of the Fourth Asia-Pacific Bioinformatics Conference (APBC 2006), pp. 187–196 (2006)Google Scholar
  24. 24.
    Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)Google Scholar
  25. 25.
    Sanderson, M.: r8s software package, Available from:
  26. 26.
    Swofford, D.L.: PAUP*: Phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Underland (1996); Version 4.0Google Scholar
  27. 27.
    Tajima, F.: Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983)Google Scholar
  28. 28.
    Takahata, N.: Gene genealogy in three related populations: Consistency probability between gene and population trees. Genetics 122, 957–966 (1989)Google Scholar
  29. 29.
    Welch, R.A., Burland, V., Plunkett, G., Redford, P., Roesch, P., Rasko, D., Buckles, E.L., Liou, S.R., Boutin, A., Hackett, J., et al.: Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 99, 17020–17024 (2002)CrossRefGoogle Scholar
  30. 30.
    Zwickl, D., Hillis, D.: Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51(4), 588–598 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cuong Than
    • 1
  • Derek Ruths
    • 1
  • Hideki Innan
    • 2
  • Luay Nakhleh
    • 1
  1. 1.Dept. of Computer ScienceRice UniversityHoustonUSA
  2. 2.Human Genetics CenterThe University of Texas Health Science CenterHoustonUSA

Personalised recommendations