Conservation Patterns in cis-Elements Reveal Compensatory Mutations

  • Perry Evans
  • Greg Donahue
  • Sridhar Hannenhalli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4205)


Transcriptional regulation critically depends on proper interactions between transcription factors (TF) and their cognate DNA binding sites or cis elements. A better understanding and modelling of the TF-DNA interaction is an important area of research. The Positional Weight Matrix (PWM) is the most common model of TF-DNA binding and it presumes that the nucleotide preferences at individual positions within the binding site are independent. However, studies have shown that this independence assumption does not always hold. If the nucleotide preference at one position depends on the nucleotide at another position, a chance mutation at one position should exert selection pressures at the other position. By comparing the patterns of evolutionary conservation at individual positions within cis elements, here we show that positional dependence within binding sites is highly prevalent. We also show that dependent positions are more likely to be functional, as evidenced by a higher information content and higher conservation. We discuss two examples—Elk-1 and SAP-1 where the inferred compensatory mutation is consistent with known TF-DNA crystal structure.


Compensatory Mutation Positional Dependence Unconditional Model Human Promoter Conservation Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ptashne, M.: A genetic switch, 3rd edn. Cold Spring Harbor Laboratory Press (2004)Google Scholar
  2. 2.
    Kadonaga, J.T.: Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004)CrossRefGoogle Scholar
  3. 3.
    Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990)CrossRefGoogle Scholar
  4. 4.
    Guille, M.J., Kneale, G.G.: Methods for the analysis of DNA-protein interactions. Mol. Biotechnol. 8, 35–52 (1997)CrossRefGoogle Scholar
  5. 5.
    Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformatics 16, 16–23 (2000)CrossRefGoogle Scholar
  6. 6.
    Man, T.K., Stormo, G.D.: Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Nucleic Acids Res. 29, 2471–2478 (2001)CrossRefGoogle Scholar
  7. 7.
    Osada, R., Zaslavsky, E., Singh, M.: Comparative analysis of methods for representing and searching for transcription factor binding sites. Bioinformatics 20, 3516–3525 (2004)CrossRefGoogle Scholar
  8. 8.
    Hannenhalli, S., Wang, L.S.: Enhanced position weight matrices using mixture models. Bioinformatics 21(suppl. 1), i204–i212 (2005)CrossRefGoogle Scholar
  9. 9.
    Reynolds, M.G.: Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156, 1471–1481 (2000)Google Scholar
  10. 10.
    McGregor, A.P., Shaw, P.J., Hancock, J.M., Bopp, D., Hediger, M., Wratten, N.S., Dover, G.A.: Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evol. Dev. 3, 397–407 (2001)CrossRefGoogle Scholar
  11. 11.
    Pischedda, A., Chippindale, A.: Sex, mutation and fitness: asymmetric costs and routes to recovery through compensatory evolution. J. Evol. Biol. 18, 1115–1122 (2005)CrossRefGoogle Scholar
  12. 12.
    Raviscioni, M., Gu, P., Sattar, M., Cooney, A.J., Lichtarge, O.: Correlated evolutionary pressure at interacting transcription factors and DNA response elements can guide the rational engineering of DNA binding specificity. J. Mol. Biol. 350, 402–415 (2005)CrossRefGoogle Scholar
  13. 13.
    Agarwal, P., Bafna, V.: Detecting non-adjoining correlations with signals in DNA. In: RECOMB (1998)Google Scholar
  14. 14.
    Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)CrossRefGoogle Scholar
  15. 15.
    Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W., Lenhard, B.: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004)CrossRefGoogle Scholar
  16. 16.
    Levy, S., Hannenhalli, S.: Identification of transcription factor binding sites in the human genome sequence. Mamm. Genome. 13, 510–514 (2002)CrossRefGoogle Scholar
  17. 17.
    Fitch, W.M.: Toward Defining the Course of Evolution: Minimum Change for a Specified Tree Topology. Systematic Zoology 20, 406–416 (1971)CrossRefGoogle Scholar
  18. 18.
    Schneider, T.D., Stormo, G.D., Gold, L., Ehrenfeucht, A.: Information content of binding sites on nucleotide sequences. J. Mol. Biol. 188, 415–431 (1986)CrossRefGoogle Scholar
  19. 19.
    Mo, Y., Vaessen, B., Johnston, K., Marmorstein, R.: Structure of the elk-1-DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA. Nat. Struct. Biol. 7, 292–297 (2000)CrossRefGoogle Scholar
  20. 20.
    Mo, Y., Vaessen, B., Johnston, K., Marmorstein, R.: Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol. Cell. 2, 201–212 (1998)CrossRefGoogle Scholar
  21. 21.
    Sinha, S., Blanchette, M., Tompa, M.: PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinformatics 5, 170 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Perry Evans
    • 1
  • Greg Donahue
    • 1
  • Sridhar Hannenhalli
    • 1
  1. 1.Genomics and Computational Biology, Department of GeneticsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations