Skip to main content

Ordering Partially Assembled Genomes Using Gene Arrangements

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4205))

Abstract

Several mammalian genomes will only be sequenced at a 2X coverage, resulting in the impossibility of assembling contigs into chromosomes. We introduce the problem of ordering the contigs of two partially assembled genomes so as to maximize the similarity (measured in terms of genome rearrangements) between the assembled genomes. We give a linear-time algorithm for the Block Ordering Problem (BOP): Given two signed permutations (genomes) that are been broken into blocks (contigs), order and orient each set of blocks, in such a way that the number of cycles in the breakpoint graph of the resulting permutations is maximized. We illustrate our algorithm on a set of 90 markers from the human and mouse chromosomes X and show how the size of the contigs and the rearrangement distance between the two genomes affects the accuracy of the predicted assemblies. The appendix and an implementation are available at www.mcb.mcgill.ca/~egaul/recomb2006.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Research 14(4), 507–516 (2004)

    Article  Google Scholar 

  2. Ma, J., Zhang, L., Suh, B., Raney, B.J., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Research (in press, 2006)

    Google Scholar 

  3. Murphy, W.J., Larkin, D.M., van der Wind, A.E., Bourque, G., Tesler, G., Auvil, L., Beever, J.E., Chowdhary, B.P., Galibert, F., Gatzke, L., Hitte, C., Meyers, S.N., Milan, D., Ostrander, E.A., Pape, G., Parker, H.G., Raudsepp, T., Rogatcheva, M.B., Schook, L.B., Skow, L.C., Welge, M., Womack, J.E., O’brien, S.J., Pevzner, P.A., Lewin, H.A.: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309(5734), 613–617 (2005)

    Article  Google Scholar 

  4. El-Mabrouk, N., Nadeau, J., Sankoff, D.: Genome halving. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 235–250. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Murphy, W.J., Bourque, G., Tesler, G., Pevzner, P., O’Brien, S.J.: Reconstructing the genomic architecture of mammalian ancestors using multispecies comparative maps. Hum Genomics 1(1), 30–40 (2003)

    Google Scholar 

  6. Tang, J., Moret, B.M.E.: Scaling up accurate phylogenetic reconstruction from gene-order data. Bioinformatics 19 (Suppl. 1), 305–312 (2003)

    Article  Google Scholar 

  7. Tesler, G.: GRIMM: genome rearrangements web server. Bioinformatics 18(3), 492–493 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bourque, G., Tesler, G., Pevzner, P.A.: The convergence of cytogenetics and rearrangement-based models for ancestral genome reconstruction. Genome Res. 16(3), 311–313 (2006)

    Article  Google Scholar 

  9. Froenicke, L., CaldŽs, M.G., Graphodatsky, A., MŸller, S., Lyons, L.A., Robinson, T.J., Volleth, M., Yang, F., Wienberg, J.: Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res. 16(3), 306–310 (2006)

    Article  Google Scholar 

  10. Peng, Q., Pevzner, P.A., Tesler, G.: The Fragile Breakage versus Random Breakage Models of Chromosome Evolution. PLoS Comput. Biol. 2(2), 14 (2006)

    Article  Google Scholar 

  11. Sankoff, D., Trinh, P.: Chromosomal breakpoint reuse in genome sequence rearrangement. J. Comput. Biol. 12(6), 812–821 (2005)

    Article  Google Scholar 

  12. Margulies, E.H., Vinson, J.P., Miller, W., Jaffe, D.B., Lindblad-Toh, K., Chang, J.L., Green, E.D., Lander, E.S., Mullikin, J.C., Clamp, M.: (NISC) Comparative Sequencing Program. An initial strategy for the systematic identification of functional elements in the human genome by low-redundancy comparative sequencing. Proc. Natl. Acad. Sci. USA 102(13), 4795–4800 (2005)

    Article  Google Scholar 

  13. Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., Weinstock, G.M., Wilson, R.K., Gibbs, R.A., Kent, W.J., Miller, W., Haussler, D.: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15(8), 1034–1050 (2005)

    Article  Google Scholar 

  14. Bourque, G., Pevzner, P.A.: Genome-Scale Evolution: Reconstructing Gene Orders in the Ancestral Species. Genome Res. 12(1), 26–36 (2002)

    Google Scholar 

  15. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Applied Mathematics 146(2), 134–145 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip polynomial algorithm for sorting signed permutations by reversals. In: Proceedings of the 27th Annual ACM Symposium on the Theory of Computing, pp. 178–187 (1995)

    Google Scholar 

  17. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  18. Zheng, C., Lenert, A., Sankoff, D.: Reversal distance for partially ordered genomes. Bioinformatics 21(suppl. 1), i502–i508 (2005)

    Article  Google Scholar 

  19. Bergeron, A., Mixtacki, J., Stoye, J.: 10. In: Mathematics of Evolution and Phylogeny: the Inversion Distance Problem, 1st edn., pp. 262–290. Oxford University Press, Oxford (2005)

    Google Scholar 

  20. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. USA 100(13), 7672–7677 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaul, É., Blanchette, M. (2006). Ordering Partially Assembled Genomes Using Gene Arrangements. In: Bourque, G., El-Mabrouk, N. (eds) Comparative Genomics. RCG 2006. Lecture Notes in Computer Science(), vol 4205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864127_10

Download citation

  • DOI: https://doi.org/10.1007/11864127_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44529-6

  • Online ISBN: 978-3-540-44530-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics