Advertisement

What Is the Region Occupied by a Set of Points?

  • Antony Galton
  • Matt Duckham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4197)

Abstract

There are many situations in GIScience where it would be useful to be able to assign a region to characterize the space occupied by a set of points. Such a region should represent the location or configuration of the points as an aggregate, abstracting away from the individual points themselves. In this paper, we call such a region a ‘footprint’ for the points. We investigate and compare a number of methods for producing such footprints, with respect to nine general criteria. The discussion identifies a number of potential choices and avenues for further research. Finally, we contrast the related research already conducted in this area, highlighting differences between these existing constructs and our ‘footprints’.

Keywords

Convex Hull Voronoi Diagram Empty Space Delaunay Triangulation Jordan Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Berg, M., Schwarzkopf, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and applications, 2nd edn. Springer, Berlin (2000)zbMATHGoogle Scholar
  2. 2.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    van Kreveld, M.: Finding the wood by the trees. CG Tribune (1998), http://www.inria.fr/prisme/personnel/bronnimann/cgt/cgt10.ps
  4. 4.
    Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient characteristic hulls (in preparation, 2006)Google Scholar
  5. 5.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New York (1982)zbMATHGoogle Scholar
  6. 6.
    Alani, H., Jones, C.B., Tudhope, D.: Voronoi-based region approximation for geographical information retrieval with gazetteers. International Journal of Geographical Information Science 15, 287–306 (2001)CrossRefGoogle Scholar
  7. 7.
    Arampatzis, A., van Kreveld, M., Reinbacher, I., Jones, C.B., Vaid, S., Clough, P., Joho, H., Sanderson, M., Benkert, M., Wolff, A.: Web-based delineation of imprecise regions. In: Workshop on Geographic Information Retrieval (SIGIR 2004) (2004) (accessed July 8, 2005), http://www.geo.unizh.ch/~rsp/gir/abstracts/arampatzis.pdf
  8. 8.
    Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Transactions on Information Theory IT-29, 551–559 (1983)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Traka, M., Tziritas, G.: Panoramic view construction. Signal Processing: Image Communication 18, 465–481 (2003)Google Scholar
  10. 10.
    Amenta, N., Choi, S., Kolluri, R.: The power crust. In: Sixth ACM Symposium on Solid Modeling and Applications, pp. 249–260 (2001)Google Scholar
  11. 11.
    Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications 19, 127–153 (2001)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Sklansky, J., Kibler, D.: A theory of nonuniformly digitized binary pictures. IEEE Transactions on Systems, Man, and Cybernetics 6, 637–647 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cinque, L., Lombardi, L.: Shape description and recognition by a multiresolution approach. Image and Vision Computing 13, 599–607 (1995)CrossRefGoogle Scholar
  14. 14.
    Borgefors, G., Nyström, I., di Baja, G.S.: Computing skeletons in three dimensions. Pattern Recognition 32, 1225–1236 (1999)CrossRefGoogle Scholar
  15. 15.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  16. 16.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural Networks 16, 3 (2005)CrossRefGoogle Scholar
  17. 17.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Zoology 18, 259–278 (1969)CrossRefGoogle Scholar
  18. 18.
    Toussaint, G.T.: The relative neighborhood graph of a finite planar set. Pattern Recognition 12, 261–268 (1980)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antony Galton
    • 1
  • Matt Duckham
    • 2
  1. 1.School of Engineering, Computer Science, and MathematicsUniversity of ExeterExeterUK
  2. 2.Department of GeomaticsUniversity of MelbourneVictoriaAustralia

Personalised recommendations