Incorporating Landmarks with Quality Measures in Routing Procedures

  • Birgit Elias
  • Monika Sester
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4197)


In this paper we present an approach to providing landmark-based routes using a shortest-path algorithm. We start from the assumption, that at one junction there can be several landmarks to choose among, in order to find an optimal description of a route. The landmark selection used for describing the route is optimized taking the quality measures for the landmarks into account. Therefore, it is necessary to define quality measures. In the paper different types of quality measures are introduced and their integration in the route graph, as well as in a routing algorithm is presented. The usability of the approach is demonstrated using test data.


Dijkstra Algorithm Quality Weight Route Description Route Segment Landmark Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daniel, M.-P., Denis, M.: Spatial descriptions as navigational aids: A cognitive analysis of route directions. Kognitionswissenschaft 7, 45–52 (1998)CrossRefGoogle Scholar
  2. 2.
    Denis, M., Pazzaglia, F., Cornoldi, C., Bertolo, L.: Spatial discourse and navigation: An analysis of route directions in the city of venice. Applied Cognitive Psychology 13, 145–174 (1999)CrossRefGoogle Scholar
  3. 3.
    Tversky, B., Lee, P.: Pictorial and verbal tools for conveying routes. In: Freksa, C., Mark, D. (eds.) Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science, pp. 51–64. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Sorrows, M., Hirtle, S.: The nature of landmarks for real and electronic spaces. In: Freksa, C., Mark, D. (eds.) Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science, pp. 37–50. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Nothegger, C., Winter, S., Raubal, M.: Computation of the salience of features. Spatial Cognition and Computation 4, 113–136 (2004)CrossRefGoogle Scholar
  6. 6.
    Winter, S.: Route adaptive selection of salient features. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 349–361. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Klippel, A., Winter, S.: Structural salience of landmarks for route directions. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 347–362. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Klippel, A., Tappe, H., Habel, C.: Pictorial representations of routes: Chunking route segments during comprehension. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds.) Spatial Cognition III. LNCS, vol. 2685, pp. 11–33. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Elias, B.: Extracting landmarks with data mining methods. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 375–389. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Elias, B., Brenner, C.: Automatic generation and application of landmarks in navigation data sets. In: Fisher, P. (ed.) Developments in Spatial Data Handling, pp. 469–480. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Elias, B.: Extraktion von Landmarken für die Navigation. Ph.D thesis, Universität Hannover (in press, 2006)Google Scholar
  12. 12.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische Mathematik, vol. 1, pp. 269–271. Springer, Heidelberg (1959)Google Scholar
  13. 13.
    Duckham, M., Kulik, L.: “Simplest” paths: Automated route selection for navigation. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Caduff, D., Timpf, S.: The landmark spider: Representing landmark knowledge for wayfinding tasks. In: Barkowsky, T., Freksa, C., Hegarty, M., Lowe, R. (eds.) Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance, pp. 30–35. AAAI Press, Stanford (2005)Google Scholar
  15. 15.
    Winter, S.: Modeling costs of turns in route planning. GeoInformatica 6, 345–361 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Golledge, R.G.: Path selection and route preference in human navigation: A progress report. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 207–222. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Golledge, R.D.: Human wayfinding and cognitive maps. In: Wayfinding Behavior, pp. 5–45. John Hopkins Press (1999)Google Scholar
  18. 18.
    Dalton, R.C.: The secret is to follow your nose: Route path selection and angularity. Environment and Behavior 35, 107–131 (2003)CrossRefGoogle Scholar
  19. 19.
    Miller, G.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63, 81–97 (1956)CrossRefGoogle Scholar
  20. 20.
    Mark, D.M.: Automated route selection for navigation. IEEE Aerospace and Electronic Systems Magazine 1, 2–5 (1986)CrossRefGoogle Scholar
  21. 21.
    Richter, K.-F., Klippel, A.: A model for context-specific route directions. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS, vol. 3343, pp. 58–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Richter, K.-F., Klippel, A., Freksa, C.: Shortest, fastest, - but what next? a different approach to route directions. In: Raubal, M., Sliwinski, A., Kuhn, W. (eds.) Geoinformation und Mobilität - von der Forschung zur praktischen Anwendung. Beiträge zu den Münsteraner GI-Tagen 2004, IfGIprints, Institut für Geoinformatik; Münster, pp. 205–217 (2004)Google Scholar
  23. 23.
    Burnett, G., Smith, D., May, A.: Supporting the navigation task: Characteristics of ’good’ landmarks. In: Hanson, M.A. (ed.) Contempory Ergonomics 2001, pp. 441–446. Taylor and Francis, Abington (2001)Google Scholar
  24. 24.
    Maaß, W.: How spatial information connects visual perception and natural language generation in dynamic environments. In: Frank, A., Kuhn, W. (eds.) Spatial Information Theory, pp. 223–240. Springer, Heidelberg (1995)Google Scholar
  25. 25.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Birgit Elias
    • 1
  • Monika Sester
    • 1
  1. 1.ikg – Institute of Cartography and GeoinformaticsUniversity of HannoverHannoverGermany

Personalised recommendations