Advertisement

A Multi-resolution Representation for Terrain Morphology

  • Emanuele Danovaro
  • Leila De Floriani
  • Laura Papaleo
  • Maria Vitali
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4197)

Abstract

Mesh-based terrain representations provide accurate descriptions of a terrain, but fail in capturing its morphological structure. The morphology of a terrain is defined by its critical points and by the critical lines joining them, which form a so-called surface network. Because of the large size of current terrain data sets, a multi-resolution representation of the terrain morphology is crucial. Here, we address the problem of representing the morphology of a terrain at different resolutions. The basis of the multi-resolution terrain model, that we call a Multi-resolution Surface Network (MSN), is a generalization operator on a surface network, which produces a simplified representation incrementally. An MSN is combined with a multi-resolution mesh-based terrain model, which encompasses the terrain morphology at different resolutions. We show how variable-resolution representations can be extracted from an MSN, and we present also an implementation of an MSN in a compact encoding data structure.

Keywords

Directed Acyclic Graph Morse Theory Morse Function Integral Line Surface Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajaj, C.L., Pascucci, V., Shikore, D.R.: Visualization of scalar topology for structural enhancement. In: Proceedings IEEE Visualization 1998, pp. 51–58. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  2. 2.
    Bajaj, C.L., Shikore, D.R.: Topology preserving data simplification with error bounds. Computers and Graphics 22(1), 3–12 (1998)CrossRefGoogle Scholar
  3. 3.
    Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional Morse functions. In: Turk, G., van Wijk, J., Moorhead, R. (eds.) Proceedings IEEE Visualization 2003, pp. 139–146. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  4. 4.
    Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics 10(4), 385–396 (2004)CrossRefGoogle Scholar
  5. 5.
    Bremer, P.-T., Pascucci, V., Hamann, B.: Maximizing adaptivity in hierarchical topological models. In: International Conference on Shape Modeling and Applications, pp. 300–309. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  6. 6.
    Werner, C.: Formal analysis of ridge and channel patterns in maturely eroded terrain. Annals of the Association of American Geographers 78(2), 253–270 (1988)CrossRefGoogle Scholar
  7. 7.
    Čomić, L., De Floriani, L., Papaleo, L.: Morse-smale decompositions for modeling terrain knowledge. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 426–444. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Danovaro, E., De Floriani, L., Magillo, P., Mesmoudi, M.M., Puppo, E.: Morphology-driven simplification and multi-resolution modeling of terrains. In: Hoel, E., Rigaux, P. (eds.) Proceedings ACM-GIS 2003 - The 11th International Symposium on Advances in Geographic Information Systems, pp. 63–70. ACM Press, New York (2003)CrossRefGoogle Scholar
  9. 9.
    Danovaro, E., De Floriani, L., Mesmoudi, M.M.: Topological analysis and characterization of discrete scalar fields. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 386–402. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Danovaro, E., De Floriani, L., Papaleo, L., Vitali, M.: Multi-resolution morse-smale decomposition of triangulated terrains. Technical Report DISI-TR-2005-21, Department of Computer and Information Sciences, University of Genova (May 2005)Google Scholar
  11. 11.
    Danovaro, E., De Floriani, L., Papaleo, L., Vitali, M.: Watershed algorithms for TINs: Implementations and Comparisons. Technical Report DISI-TR-06-03, Department of Computer and Information Sciences, University of Genova (February 2006)Google Scholar
  12. 12.
    De Floriani, L., Puppo, E., Magillo, P.: A formal approach to multi-resolution modeling. In: Strasser, W., Klein, R., Rau, R. (eds.) Geometric Modeling: Theory and Practice, pp. 302–323. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    De Floriani, L., Puppo, E., Magillo, P.: Applications of computational geometry to Geographic Information Systems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, ch. 7, pp. 333–388. Elsevier Science, Amsterdam (1999)Google Scholar
  14. 14.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings 19th ACM Symposium on Computational Geometry, pp. 361–370 (2003)Google Scholar
  15. 15.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proceedings 17th ACM Symposium on Computational Geometry, pp. 70–79. ACM Press, New York (2001)Google Scholar
  16. 16.
    Griffiths, H.B.: Surfaces. Cambridge University Press, Cambridge (1976)MATHGoogle Scholar
  17. 17.
    Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.-T., Hamann, B.: Topology-based simplification for feature extraction from 3d scalar fields. In: Proceedings of IEEE Conference on Visualization (2005)Google Scholar
  18. 18.
    Ware, J.M., Jones, C.B.: A multiresolution topographic surface database. International Journal of Geographical Information Systems 6(6), 479–496 (1992)CrossRefGoogle Scholar
  19. 19.
    Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)MATHCrossRefGoogle Scholar
  20. 20.
    Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)MATHGoogle Scholar
  21. 21.
    Pascucci, V.: Topology diagrams of scalar fields in scientific visualization. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 121–129. John Wiley and Sons Ltd., Chichester (2004)CrossRefGoogle Scholar
  22. 22.
    Pfaltz, J.L.: Surface networks. Geographical Analysis 8, 77–93 (1976)CrossRefGoogle Scholar
  23. 23.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in c, 2nd edn. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  24. 24.
    Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)MATHMathSciNetGoogle Scholar
  25. 25.
    Schneider, B.: Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis 37, 244–263 (2005)CrossRefGoogle Scholar
  26. 26.
    Schneider, B., Wood, J.: Construction of metric surface networks from raster-based DEMs. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 53–70. John Wiley and Sons Ltd., Chichester (2004)CrossRefGoogle Scholar
  27. 27.
    Smale, S.: Morse inequalities for a dynamical system. Bulletin of American Mathematical Society 66, 43–49 (1960)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Takahashi, S.: Algorithms for extracting surface topology from digital elevation models. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 31–51. John Wiley and Sons Ltd., Chichester (2004)CrossRefGoogle Scholar
  29. 29.
    Takahashi, S., Ikeda, T., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. Computer Graphics Forum 14(3), 181–192 (1995)CrossRefGoogle Scholar
  30. 30.
    Vincent, L., Soille, P.: Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar
  31. 31.
    Wolf, G.W.: Topographic surfaces and surface networks. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 15–29. John Wiley and Sons Ltd., Chichester (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emanuele Danovaro
    • 1
  • Leila De Floriani
    • 1
    • 2
  • Laura Papaleo
    • 1
  • Maria Vitali
    • 1
  1. 1.Department of Computer and Information SciencesUniversity of GenovaItaly
  2. 2.Computer Science Department Center for Automation Research, Institute for Advanced Computer StudiesUniversity of MarylandCollege Park

Personalised recommendations