Correlation Analysis of Discrete Motions

  • Takeshi Shirabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4197)


Points are dimensionless geometric elements often employed by geographic information systems to model a range of real-world objects such as people and vehicles. Many analytical tools have been developed for finding and validating certain patterns of static points such as clustering. In this paper, we present our preliminary efforts to develop statistical methods for analyzing patterns of moving points whose locations are tracked at equal intervals of time. Focus is placed on simple descriptive statistics—rather than more sophisticated inferential statistics—useful for detecting a tendency of two or more points to move in some coordinated fashion. A major implication of this paper is that statistical analysis complements spatial data query and modeling with respect to dynamics of sets of point-like objects in a way that potentially interrelated subsets are screened.


Global Position System Geographic Information System Motion Vector Discrete Motion Point Pattern Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Taha, K., Barrera, R.: Identities through time. In: Ehlers, M., Steiner, D. (eds.) Proceedings of International Workshop on Requirements for Integrated Geographic Information Systems, New Orleans, LA, pp. 1–12. Environmental Research Institute of Michigan (ERIM) (1994)Google Scholar
  2. 2.
    Bailey, T.C., Gatrell, A.C.: Interactive spatial data analysis. Longman Scientific & Technical, Essex, England (1995)Google Scholar
  3. 3.
    Chatfield, C.: The Analysis of Time Series An Introduction. Chapman and Hall, Boca Raton (2004)MATHGoogle Scholar
  4. 4.
    Diggle, P.J.: The statistical Analysis of Spatial point patterns. Academic Press, London (1983)Google Scholar
  5. 5.
    Boots, B.N., Getis, A.: Point Pattern Analysis. Sage Publications, Newbury Park (1987)Google Scholar
  6. 6.
    Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-temporal data types: an approach to modeling and querying moving objects in databases. Geoinformatica 3(3), 269–296 (1999)CrossRefGoogle Scholar
  7. 7.
    Frank, A.U.: Socio-economic units: their life and motion. In: Frank, A.U., Raper, J., Cheylan, J.P. (eds.) Life and Motion of Socio-Economic Units, pp. 21–34. Taylor & Francis, London (2001)Google Scholar
  8. 8.
    Galton, A.: Dynamic Collectives and Their Collective Dynamics. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 300–315. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Government of Yukon and Porcupine Caribou Technical Committee, Canada. Porcupine caribou herd satellite collar project,
  10. 10.
    Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann Publishers, San Francisco (2005)Google Scholar
  11. 11.
    Hornsby, K., Egenhofer, M.J.: Identity-based change: a foundation for spatio-temporal knowledge representation. International Journal of Geographical Information Science 14(3), 207–224 (2000)CrossRefGoogle Scholar
  12. 12.
    Hornsby, K., Egenhofer, M.J.: Modeling moving objects over multiple granularities. Annals of Mathematics and Artificial Intelligence 36(1-2), 177–194 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Langran, G.: Time in Geographic Information Systems. Taylor & Francis, London (1992)Google Scholar
  14. 14.
    Laube, P., Imfeld, S.: Analyzing Relative Motion within Groups of Trackable Moving Point Objects. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 132–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Laube, P., van Kreveld, M., Imfeld, S.: Finding REMO—Detecting Relative Motion Patterns in Geospatial Lifelines. In: Fisher, P.F. (ed.) Developments in Spatial Data Handling, Proceedings of the 11th International Symposium on Spatial Data Handling, Leicester, UK, August 23-25, 2004, pp. 201–214. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. International Journal of Geographical Information Science 19, 639–668 (2005)CrossRefGoogle Scholar
  17. 17.
    Miller, H.J.: Modeling accessibility using space-time prism concepts within geographical information systems. International Journal of Geographical Information Systems 5, 287–301 (1991)CrossRefGoogle Scholar
  18. 18.
    Moreira, J., Ribeiro, C., Saglio, J.M.: Representing and Manipulation of Moving Points: An extended data model for location estimation. Cartography and Geographic Information Science 26(2), 109–123 (1999)CrossRefGoogle Scholar
  19. 19.
    Nittel, S., Duckham, M., Kulik, L.: Information dissemination in mobile ad-hoc geosensor networks. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 206–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Pearson, K.: The problem of the random walk. Nature 72, 294 (1905)CrossRefGoogle Scholar
  21. 21.
    Peuquet, D.: It’s about time: a conceptual framework for the representation of temporal dynamics in GIS. Annals of the American Association of Geographers 84(3), 441–461 (1994)CrossRefGoogle Scholar
  22. 22.
    Stell, J.G.: Granularity in change over time. In: Duckham, M., Goodchild, M., Worboys, M. (eds.) Foundations of Geographic Information Science, pp. 95–115. Taylor & Francis, Abington (2003)CrossRefGoogle Scholar
  23. 23.
    Van de Weghe, N., Kuijpers, B., Bogaert, P., De Maeyer, P.: A Qualitative Trajectory Calculus and the Composition of its Relations. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 60–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Worboys, M.F.: Event-oriented approaches to geographic phenomena. International Journal of Geographical Information Science 19(1), 1–28 (2005)CrossRefGoogle Scholar
  25. 25.
    Yuan, M.: Use of three-domain representation to enhance GIS support for complex spatiotemporal queries. Transactions in GIS 3(2), 137–160 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Takeshi Shirabe
    • 1
  1. 1.Institute for Geoinformation and CartographyTechnical University of ViennaViennaAustria

Personalised recommendations