Orientation Calculi and Route Graphs: Towards Semantic Representations for Route Descriptions

  • Bernd Krieg-Brückner
  • Hui Shi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4197)


We are aiming for semantic representations of route descriptions for dialogues between a driver and the Bremen intelligent wheelchair Spatial Cognition Rolland, integrating qualitative orientation calculi with RouteGraphs. Relative orientations, and the algebraic properties of the inverse and full complement operations, are the basis for specifying properties of orientations between directed edges between locations. 8 orientations at the entry and the exit of an edge are then used to define the relations of variants of the Double-Cross Calculus with 8 and 12 orientations, resp. With an additional predicate “at” a location, we then define all 15 relations. Edges are related to route segments with orientation functions at entries and exits. The inherent origin orientation at a place is then used to solve the place integration problem when joining individual routes into Route Graphs. Finally, some abstract predicates for route descriptions such as “via”, “pass by”, etc., are defined in terms of these calculi.


Orientation Information Algebraic Property Spatial Knowledge Route Description Route Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26(11), 832–843 (1983)MATHGoogle Scholar
  2. 2.
    Astesiano, E., Bidoit, M., Krieg-Brückner, B., Kirchner, H., Mosses, P., Sannella, D., Tarlecki, A. (eds.): CASL - the Common Algebraic Specification Language. Number Special Issue. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Qualitative spatial representation and reasoning with the region connection calculus. Ceoinformatics 1, 1–44 (1997)Google Scholar
  4. 4.
    Denis, M.: The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie Cognitive 16, 409–458 (1997)Google Scholar
  5. 5.
    Fischer, K.: Linguistic methods for investigating concepts in use. Methodologie in der Linguistik (2003)Google Scholar
  6. 6.
    Frank, A.U.: Qualitative spatial reasoning with cardinal directions. In: Proc. Seventh Austrian Conference on Artificial Intelligence, Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Freksa, C.: Qualitative spatial reasoning. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and Linguistic Aspects of Geographic Space. Kluwer, Dordrecht (1991)Google Scholar
  8. 8.
    Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Formentini, U., Campari, I. (eds.) GIS 1992. LNCS, vol. 639, pp. 162–178. Springer, Heidelberg (1992)Google Scholar
  9. 9.
    Group, T.C.L.D., Krieg-Brückner, E., Mosses, E.D.: casl summary. In: Mosses, P.D. (ed.) CASL Reference Manual. LNCS, vol. 2960, pp. 1–69. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Krieg-Brückner, B., Frese, U., Lüttich, K., Mandel, C., Mossakowski, T., Ross, R.J.: Specification of route graphs via an ontology. In: Freksa, C., Nebel, B., Krieg-Brückner, B., Knauff, M., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS, vol. 3343, pp. 989–995. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Kuipers, B.: The spatial semantic hierarchy. Artificial Intelligence 119, 191–233 (2000)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Lankenau, A., Röfer, T.: A safe and versatile mobility assistant. IEEE Robotics and Automation Magazine 1, 29–37 (2001)CrossRefGoogle Scholar
  13. 13.
    Lankenau, A., Röfer, T.: Mobile robot self-localization in large-scale environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1359–1364 (2002)Google Scholar
  14. 14.
    Mandel, C., Huebner, K., Vierhuff, T.: Towards an Autonomous Wheelchair: Cognitive Aspects in Service Robotics. In: Towards Autonomous Robotic Systems (TAROS 2005), Proceedings (to appear, 2005)Google Scholar
  15. 15.
    Moratz, R., Ragni, M.: Qualitative spatial reasoning about relative point position. Journal of Visual Languages & Computing (to appear, 2006)Google Scholar
  16. 16.
    Mossakowski, T.: CASL: From semantics to tools. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 93–108. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Mossakowski, T.: Heterogeneous tool set (Hets) (2004), Web Site,
  18. 18.
    Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Technical report, Universitaet Bremen, Habilitation thesis (2005)Google Scholar
  19. 19.
    Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)MATHGoogle Scholar
  20. 20.
    Mosses, P.D., Bidoit, M.: CASL — the Common Algebraic Specification Language: User Manual. In: Mosses, P.D. (ed.) CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS, vol. 3157, pp. 65–74. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Roggenbach, M., Mossakowski, T., Schröder, L.: Libraries. In: Mosses, P. (ed.) CASL Reference Manual [19] Part VIGoogle Scholar
  23. 23.
    Schlieder, C.: Anordnung: Eine Fallstudie zur Semantik bildhafter Repräsentation. In: Freksa, C., Habel, C. (eds.) Reprësentation and Verarbeitung räumlichen Wissens, pp. 129–142. Springer, Heidelberg (1990)Google Scholar
  24. 24.
    Shi, H., Krieg-Brückner, B.: Modelling human route descriptions using qualitative spatial calculi and route graphs (submitted, 2006)Google Scholar
  25. 25.
    Shi, H., Tenbrink, T.: Telling Rolland where to go: HRI dialogues on route navigation. In: Proc. WoSLaD Workshop on Spatial Language and Dialogue, October 23-25 (2005)Google Scholar
  26. 26.
    Talmy, L.: How language structures space. In: Pick, H.L., Acredolo, L.P. (eds.) Spatial Orientation: Theory, Research and Application. Plenum, NY (1983)Google Scholar
  27. 27.
    Timpf, S.: Making sense of space – the legibility of public transport stations. Environment and Planning (submitted)Google Scholar
  28. 28.
    Tversky, B.: Structures of mental spaces – how people think about space. Environment and Behavior 35(1), 66–80 (2003)CrossRefGoogle Scholar
  29. 29.
    Tversky, B., Lee, P.U.: How space structures language. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS, vol. 1404, pp. 157–175. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  30. 30.
    Werner, S., Krieg-Brückner, B., Herrmann, T.: Modelling navigational knowledge by route graphs. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS, vol. 1849, pp. 295–317. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence 6, 49–58 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bernd Krieg-Brückner
    • 1
  • Hui Shi
    • 1
  1. 1.Universität Bremen and DFKI-Lab BremenGermany

Personalised recommendations