Advertisement

Towards a Similarity-Based Identity Assumption Service for Historical Places

  • Krzysztof Janowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4197)

Abstract

Acquisition and semantic annotation of data are fundamental tasks within the domain of cultural heritage. With the increasing amount of available data and ad hoc cross linking between their providers and users (e.g. through web services), data integration and knowledge refinement becomes even more important. To integrate information from several sources it has to be guaranteed that objects of discourse (which may be artifacts, events, persons, places or periods) refer to the same real world phenomena within all involved data sources. Local (database) identifiers however only disambiguate internal data, but fail in establishing connections to/between external data, while global identifiers can only partially solve this problem. Software assistants should support users in establishing such connections by delivering identity assumptions, i.e. by estimating whether examined data actually concerns the same real word phenomenon. This paper points out how similarity measures can act as groundwork for such assistants by introducing a similarity-based identity assumption assistant for historical places to support scholars in establishing links between distributed historical knowledge.

Keywords

Cultural Heritage Inference Rule Description Logic Spatial Reasoning Historical Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raubal, M.: Formalizing Conceptual Spaces. In: Varzi, A., Vieu, L. (eds.) Proceedings of the Third International Conference On Formal Ontology in Information Systems (FOIS 2004), pp. 153–164. IOS Press, Amsterdam (2004)Google Scholar
  2. 2.
    Janowicz, K.: SIM-DL: Towards a Similarity Measurement Theory for Description Logics in GIScience (2006) (under review)Google Scholar
  3. 3.
    Crofts, N., et al.: Definition of the CIDOC Conceptual Reference Model (version 4.2) (2005)Google Scholar
  4. 4.
    The Open Archives Initiative Protocol for Metadata Harvesting (Version 2.0), http://www.openarchives.org/OAI/openarchivesprotocol.html
  5. 5.
    Alexandria Digital Library Gazetteer, http://middleware.alexandria.ucsb.edu
  6. 6.
    Getty Thesaurus of Geographic Names, http://www.getty.edu/vow/TGNFullDisplay
  7. 7.
    Goldstone, R., Son, J.: Similarity. In: Holyoak, K., Morrison, R. (eds.) Cambridge Handbook of Thinking and Reasoning, Cambridge University Press, Cambridge (2004)Google Scholar
  8. 8.
    Rodríguez, A.M., Egenhofer, M.J.: Comparing Geospatial Entity Classes: An Asymmetric and Context-Dependent Similarity Measure. International Journal of Geographical Information Science 18(3), 229–256 (2004)CrossRefGoogle Scholar
  9. 9.
    Janowicz, K.: Extending Semantic Similarity Measurement with Thematic Roles. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 137–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Gärdenfors, P.: Conceptual Spaces - The Geometry of Thought. Bradford Books. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Schwering, A., Raubal, M.: Measuring Semantic Similarity Between Geospatial Conceptual Regions. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M.J. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 90–106. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Schwering, A.: Hybrid Model for Semantic Similarity Measurement. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1449–1465. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web Services. In: Web Service Semantics Workshop 2005 at WWW 2005, Japan (2005)Google Scholar
  14. 14.
    Maedche, A., Staab, S.: Measuring Similarity between Ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS, vol. 2473, p. 251. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Ehrig, M., et al.: Similarity for Ontologies - A Comprehensive Framework. In: 13th European Conference on Information Systems, Germany (2005)Google Scholar
  16. 16.
    Borgida, A., Walsh, T.J., Hirsh, H.: Towards Measuring Similarity in Description Logics. In: International Workshop on Description Logics (DL 2005), Scotland (2005)Google Scholar
  17. 17.
    Rada, R., et al.: Development and Application of a Metric on Semantic Nets. IEEE Transaction on Systems, Man, and Cybernetics 19(1), 17–30 (1989)CrossRefGoogle Scholar
  18. 18.
    Egenhofer, M., Al-Taha, K.: Reasoning About Gradual Changes of Topological Relationships. In: Frank, A., Campari, I., Formentini, U. (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, pp. 196–219. Springer, Berlin (1992)Google Scholar
  19. 19.
    Allen: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26, 832–843 (1983)MATHCrossRefGoogle Scholar
  20. 20.
    Freksa, C.: Temporal Reasoning Based on Semi-Intervals. Artificial Intelligence 54(1), 199–227 (1992)CrossRefMathSciNetGoogle Scholar
  21. 21.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Krzysztof Janowicz
    • 1
  1. 1.Institute for GeoinformaticsUniversity of MuensterGermany

Personalised recommendations