Private Information Retrieval Using Trusted Hardware

  • Shuhong Wang
  • Xuhua Ding
  • Robert H. Deng
  • Feng Bao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4189)


Many theoretical PIR (Private Information Retrieval) constructions have been proposed in the past years. Though information theoretically secure, most of them are impractical to deploy due to the prohibitively high communication and computation complexity. The recent trend in outsourcing databases fuels the research on practical PIR schemes. In this paper, we propose a new PIR system by making use of trusted hardware. Our system is proven to be information theoretically secure. Furthermore, we derive the computation complexity lower bound for hardware-based PIR schemes and show that our construction meets the lower bounds for both the communication and computation costs, respectively.


Data Item Computation Cost Random Permutation Block Cipher Access Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint Computing Conference, pp. 307–314 (1968)Google Scholar
  2. 2.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the o(n 1/(2k − 1)) barrier for information-theoretic private information retrieval. In: FOCS, pp. 261–270. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  4. 4.
    Beimel, A., Ishai, Y., Malkin, T.G.: Reducing the servers computation in private information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Black, J.A., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. In: FOCS, pp. 41–50 (1995)Google Scholar
  7. 7.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. ISBN 0-262-03293-7Google Scholar
  9. 9.
    Feigenbaum, J.: Encrypting problem instances. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 477–488. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Gasarch, W.: A survey on private information retrieval. The Bulletin of the European Association for Theoretical Computer Science, Computational Complexity Column (82) (2004)Google Scholar
  11. 11.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431–473 (1996)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Goldstein, J.L., Leibholz, S.W.: On the synthesis of signal switching networks with transient blocking. IEEE Transactions on Electronic Computers 16(5), 637–641 (1967)CrossRefMATHGoogle Scholar
  13. 13.
    Iliev, A., Smith, S.: Private information storage with logarithm-space secure hardware. In: International Information Security Workshops, pp. 199–214 (2004)Google Scholar
  14. 14.
    Iliev, A., Smith, S.W.: Protecting client privacy with trusted computing at the server. IEEE Security & Privacy 3(2), 20–28 (2005)CrossRefGoogle Scholar
  15. 15.
    Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Patarin, J.: Luby-rackoff: 7 rounds are enough for 2n(1 − ε) security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphismsGoogle Scholar
  19. 19.
    Smith, S.W., Safford, D.: Practical server privacy with secure coprocessors. IBM Systems Journal 40(3), 683–695 (2001)CrossRefGoogle Scholar
  20. 20.
    TCG Specification Architecture Overview, Available from:
  21. 21.
    Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)CrossRefMATHGoogle Scholar
  22. 22.
    Wang, S., Ding, X., Deng, R.H., Bao, F.: Private Information Retrieval Using Trusted Hardware. Online, available at:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shuhong Wang
    • 1
  • Xuhua Ding
    • 1
  • Robert H. Deng
    • 1
  • Feng Bao
    • 2
  1. 1.School of Information SystemsSMU 
  2. 2.Institute for Infocomm ResearchSingapore

Personalised recommendations