Advertisement

Deriving Secrecy in Key Establishment Protocols

  • Dusko Pavlovic
  • Catherine Meadows
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4189)

Abstract

Secrecy and authenticity properties of protocols are mutually dependent: every authentication is based on some secrets, and every secret must be authenticated. This interdependency is a significant source of complexity in reasoning about security. We describe a method to simplify it, by encapsulating the authenticity assumptions needed in the proofs of secrecy. This complements the method for encapsulating the secrecy assumptions in proofs of authenticity, presented in [1]. While logically straightforward, this idea of encapsulation in general, and the present treatment of secrecy in particular, allow formulating scalable and reusable reasoning patterns about the families of protocols of practical interest. The approach evolved as a design strategy in the Protocol Derivation Assistant (Pda), a semantically based environment and toolkit for derivational approach to security [2,3].

Keywords

Security Protocol Security Property Secrecy Property Derivational Approach Strand Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authentication logic for reasoning about key distribution protocols. In: Guttman, J. (ed.) Proceedings of CSFW 2005, pp. 48–61. IEEE, Los Alamitos (2005)Google Scholar
  2. 2.
    Anlauff, M., Pavlovic, D., Waldinger, R., Westfold, S.: Proving authentication properties in the Protocol Derivation Assistant. In: Proceedings of ARSPA 2006. LNCS. IEEE, Los Alamitos (to appear 2006)Google Scholar
  3. 3.
    Anlauff, M., Pavlovic, D.: Pda download web site (2003–6), http://www.kestrel.edu/software/pda
  4. 4.
    Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for proving security properties of protocols. J. of Comp. Security 11(4), 677–721 (2004)Google Scholar
  5. 5.
    Datta, A., Derek, A., Mitchell, J., Pavlovic, D.: A derivation system and compositional logic for security protocols. J. of Comp. Security 13, 423–482 (2005)Google Scholar
  6. 6.
    Meadows, C., Pavlovic, D.: Deriving, attacking and defending the GDOI protocol. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 53–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and Authenticated Key Exchanges. Designs, Codes, and Cryptography 2, 107–125 (1992)CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Pratt, V.: Modelling concurrency with partial orders. Internat. J. Parallel Programming 15, 33–71 (1987)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fabrega, F.J.T., Herzog, J., Guttman, J.: Strand spaces: What makes a security protocol correct? Journal of Computer Security 7, 191–230 (1999)Google Scholar
  11. 11.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). J. of Cryptology 15(2), 103–127 (2002)MathSciNetMATHGoogle Scholar
  12. 12.
    Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security 6, 85–128 (1998)Google Scholar
  13. 13.
    Millen, J.: On the freedom of decryption. Information Processing Letters 86(6), 329–333 (2003)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Goldreich, O.: Foundations of Cryptography. Basic Tools, vol. I. Cambridge University Press, Cambridge (2000)Google Scholar
  15. 15.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kaufman, C., Perlman, R., Speciner, M.: Network Security. Private Communication in a Public World. In: Computer Networking and Distributed System, 2nd edn. Prentice Hall PTR, Englewood Cliffs (2002)Google Scholar
  17. 17.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. In: Information Security and Cryptography. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Matsumoto, T., Takashima, Y., Imai, H.: On seeking smart public-key distribution systems. Transactions of the IECE (Japan) 69, 99–106 (1986)Google Scholar
  19. 19.
    Blake-Wilson, S., Menezes, A.: Authenticated diffie-hellman key agreement protocols. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 339–361. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing mutual implicit authentication. In: SAC 1995: Proceedings of the Selected Areas in Cryptography, London, UK, pp. 22–32. Springer, Heidelberg (1995)Google Scholar
  21. 21.
    Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for authenticated key agreement. Technical Report CORR 98-05, University of Waterloo, also in [22] (1998)Google Scholar
  22. 22.
    P1363 Working Group: The IEEE P1363 home page. standard specifications for public-key cryptography (2005), http://grouper.ieee.org/groups/1363/
  23. 23.
    Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control in distributed systems. ACM Transactions on Programming Languages and Systems 21(4), 706–734 (1993)CrossRefGoogle Scholar
  24. 24.
    Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed systems: Theory and practice. ACM Trans. on Comput. Syst. 10(4), 265–310 (1992)CrossRefGoogle Scholar
  25. 25.
    Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model. ACM Transactions on Software Engineering and Methodology 9(4), 410–442 (2000)CrossRefGoogle Scholar
  26. 26.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dusko Pavlovic
    • 1
  • Catherine Meadows
    • 2
  1. 1.Kestrel InstitutePalo Alto
  2. 2.Naval Research LaboratoryWashington DC

Personalised recommendations