Advertisement

The Use of Summaries in XML Retrieval

  • Zoltán Szlávik
  • Anastasios Tombros
  • Mounia Lalmas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4172)

Abstract

The availability of the logical structure of documents in content-oriented XML retrieval can be beneficial for users of XML retrieval systems. However, research into structured document retrieval has so far not systematically examined how structure can be used to facilitate the search process of users. We investigate how users of an XML retrieval system can be supported in their search process, if at all, through summarisation. To answer this question, an interactive information retrieval system was developed and a study using human searchers was conducted. The results show that searchers actively utilise the provided summaries, and that summary usage varied at different levels of the XML document structure. The results have implications for the design of interactive XML retrieval systems.

Keywords

Logical Structure Search Session Article Level Interactive Track Summary Usage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, A., Kumar, A., Nakamura, M., Rahman, A.F., Tarnikova, Y., Wilcox, C.: Structured and unstructured document summarization: Design of a commercial summarizer using lexical chains. In: ICDAR, pp. 1147–1152. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  2. 2.
    Amini, M., Tombros, A., Usunier, N., Lalmas, M., Gallinari, P.: Learning to summarise XML documents by combining content and structure features (poster). In: CIKM 2005, Bremen, Germany (October 2005)Google Scholar
  3. 3.
    Borlund, P.: The IIR evaluation model: a framework for evaluation of interactive information retrieval systems. Information Research 8(3) (2003)Google Scholar
  4. 4.
    Dumais, S., Cutrell, E., Chen, H.: Optimizing search by showing results in context. In: CHI 2001: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 277–284. ACM Press, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Edmundson, H.P.: New methods in automatic extracting. J. ACM 16(2), 264–285 (1969)MATHCrossRefGoogle Scholar
  6. 6.
    Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Goldstein, J., Kantrowitz, M., Mittal, V., Carbonell, J.: Summarizing text documents: sentence selection and evaluation metrics. In: SIGIR 1999, pp. 121–128. ACM Press, New York (1999)CrossRefGoogle Scholar
  8. 8.
    Kim, H., Son, H.: Interactive searching behavior with structured xml documents. In: Fuhr, et al. (eds.) [6], pp. 424–436Google Scholar
  9. 9.
    Kupiec, J., Pedersen, J., Chen, F.: A trainable document summarizer. In: SIGIR 1995, pp. 68–73. ACM Press, New York (1995)CrossRefGoogle Scholar
  10. 10.
    Pharo, N., Nordlie, R.: Context matters: An analysis of assessments of XML documents. In: Crestani, F., Ruthven, I. (eds.) CoLIS 2005. LNCS, vol. 3507, pp. 238–248. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Rölleke, T., Lübeck, R., Kazai, G.: The hyspirit retrieval platform. In: SIGIR 2001, p. 454. ACM Press, New York (2001)CrossRefGoogle Scholar
  12. 12.
    Szlávik, Z., Tombros, A., Lalmas, M.: Investigating the use of summarisation for interactive XML retrieval. In: Proceedings of the 21st ACM Symposium on Applied Computing, Information Access and Retrieval Track (SAC-IARS 2006), pp. 1068–1072 (2006) (to appear)Google Scholar
  13. 13.
    Tombros, A., Larsen, B., Malik, S.: The interactive track at INEX 2004. In: Fuhr, et al.: [6]Google Scholar
  14. 14.
    Tombros, A., Malik, S., Larsen, B.: Report on the INEX 2004 interactive track. ACM SIGIR Forum 39(1), 43–49 (2005)CrossRefGoogle Scholar
  15. 15.
    Tombros, A., Sanderson, M.: Advantages of query biased summaries in information retrieval. In: SIGIR 1998, pp. 2–10. ACM Press, New York (1998)CrossRefGoogle Scholar
  16. 16.
    White, R.W., Jose, J.M., Ruthven, I.: A task-oriented study on the influencing effects of query-biased summarisation in web searching. Inf. Process. Manage. 39(5), 707–733 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zoltán Szlávik
    • 1
  • Anastasios Tombros
    • 1
  • Mounia Lalmas
    • 1
  1. 1.Department of Computer ScienceQueen Mary University of London 

Personalised recommendations