Linear Complexity over Fp of Ternary Sidel’nikov Sequences

  • Young-Sik Kim
  • Jung-Soo Chung
  • Jong-Seon No
  • Habong Chung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4086)


In this paper, for positive integers m, M, and a prime p such that M|p m – 1, we derive linear complexity over the prime field F p of M-ary Sidel’nikov sequences of period p m – 1 using discrete Fourier transform. As a special case, the linear complexity of the ternary Sidel’nikov sequence is presented. It turns out that the linear complexity of a ternary Sidel’nikov sequence with the symbol k 0 ≠1 at the (p m –1)/2-th position is nearly close to the period of the sequence, while that with k 0 =1 shows much lower value.


Discrete Fourier Transform Binary Sequence Linear Complexity Primitive Element Error Control Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berlekamp, E.R.: Algebraic Coding Theory. Aegean Park Press, Laguna Hills (1987)Google Scholar
  2. 2.
    Blahut, R.E.: Transform techniques for error control codes. IBM J. Res. Devel. 63, 550–560 (1979)MathSciNetGoogle Scholar
  3. 3.
    Helleseth, T., Kim, S.-H., No, J.-S.: Linear complexity over F p and trace representation of Lempel-Cohn-Eastman sequences. IEEE Trans. Inf. Theory 49(6), 1548–1552 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Helleseth, T., Maas, M., Mathiassen, J.E., Segers, T.: Linear complexity over F p of Sidel’nikov sequences. IEEE Trans. Inf. Theory 50(10), 2468–2472 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Helleseth, T., Yang, K.: On binary sequences of period n = p m − 1 with optimal autocorrelation. In: Proc. SETA 2001, pp. 29–30 (2001)Google Scholar
  6. 6.
    Kim, Y.-S., Chung, J.-S., No, J.-S., Chung, H.: On the linear complexity over F p of M-ary Sidel’nikov sequences. In: Proc. IEEE ISIT 2005, pp. 2007–2011 (2005)Google Scholar
  7. 7.
    Kyureghyan, G.M., Pott, A.: On the linear complexity of the Sidelnikov-Lempel-Cohn-Eastman sequences. Des., Codes and Cryptogr. 29, 149–164 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lempel, A., Cohn, M., Eastman, W.L.: A class of balanced binary sequences with optimal autocorrelation properties. IEEE Trans. Inf. Theory IT-23(1), 38–42 (1977)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Sidel’nikov, V.M.: Some k-valued pseudo-random sequences and nearly equidistant codes. Probl. Inf. Transm. 5(1), 12–16 (1969)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Young-Sik Kim
    • 1
  • Jung-Soo Chung
    • 1
  • Jong-Seon No
    • 1
  • Habong Chung
    • 2
  1. 1.School of Electrical Engineering and Computer Science and INMCSeoul National UniversitySeoulKorea
  2. 2.School of Electronics and Electrical EngineeringHongik UniversitySeoulKorea

Personalised recommendations