Advertisement

On Immunity Profile of Boolean Functions

  • Claude Carlet
  • Philippe Guillot
  • Sihem Mesnager
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4086)

Abstract

The notion of resilient function has been recently weakened to match more properly the features required for Boolean functions used in stream ciphers. We introduce and we study an alternate notion of almost resilient function. We show that it corresponds more closely to the requirements that make the cipher more resistant to precise attacks.

Keywords

Boolean Function Stream Cipher Algebraic Degree Algebraic Immunity Algebraic Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 573. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Hammer, P., Crama, Y. (eds.) chapter of the monograph Boolean methods and models, Cambridge University Press, Cambridge (to be published), http://www-rocq.inria.fr/codes/Claude.Carlet/chap-fcts-Bool.pdf
  3. 3.
    Carlet, C.: On the secondary constructions of resilient and bent functions. In: Workshop on Coding, Cryptography and Combinatorics, pp. 3–28. Birkhäuser, Basel (2004)Google Scholar
  4. 4.
    Carlet, C.: On bent and highly nonlinear balanced/Resilient functions and their algebraic immunities. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 2006. LNCS, vol. 3857, pp. 1–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Carlet, C., Sarkar, P.: Spectral domain analysis of correlation immune and resilient boolean functions. Finite Fields and their Applications 8, 120–130 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chepyzhov, V.V., Johansson, T., Smeets, B.: A simple algorithm for fast correlation attacks on stream ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 181–195. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Courtois, N.T.: General principles of algebraic attacks and new design criteria for cipher components. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 67–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ke, P.-H., Zhang, J., Wen, Q.-Y.: Further constructions of almost resilient functions. Cryptology ePrint Archive, Report 2005/453 (2005)Google Scholar
  10. 10.
    Kurosawa, K., Johansson, T., Stinson, D.: Almost k-wise Independent Sample Spaces and Their Cryptologic Applications. Journal of Cryptology 14(4), 301–324 (2001)MathSciNetGoogle Scholar
  11. 11.
    Kurosawa, K., Matsumoto, R.: Almost Security of Cryptographic Boolean Functions. IEEE Transactions on Information Theory 50(11), 2752–2761 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  13. 13.
    Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. Journal of Cryptology 1(3), 159–176 (1989)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mihaljević, M.J., Fossorier, M.P.C., Imai, H.: A Low-Complexity and High-Performance Algorithm for the Fast Correlation Attack. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 196–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Molland, H., Mathiassen, J.E., Helleseth, T.: Improved fast correlation attack using low rate codes. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 67–81. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Siegenthaler, T.: Correlation-immunity of nonlinear combining boolean fucntions for cryptographic applications. IEEE Transactions on Information Theory 30(5), 776–779 (1984)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Xiao, G.-Z., Massey, J.L.: A spectral characterization of correlation-immune combining functions. IEEE Transactions on Information Theory 34(3), 569–571 (1988)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Claude Carlet
    • 1
    • 2
  • Philippe Guillot
    • 1
  • Sihem Mesnager
    • 1
  1. 1.MAATICAH, Université de Paris 8France
  2. 2.INRIA, Projet CodesRocquencourtFrance

Personalised recommendations