A New Algorithm to Compute Remote Terms in Special Types of Characteristic Sequences

  • Kenneth J. Giuliani
  • Guang Gong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4086)


This paper proposes a new algorithm, called the Diagonal Double-Add (DDA) algorithm, to compute the k-th term of special kinds of characteristic sequences. We show that this algorithm is faster than Fiduccia’s algorithm, the current standard for computation of general sequences, for fourth- and fifth-order sequences.


Finite Field Characteristic Sequence Linear Feedback Shift Register Linear Recurrence Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fiduccia, C.M.: An Efficient Formula for Linear Recurrences. SIAM J. Comput. 14, 106–112 (1985)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Giuliani, K., Gong, G.: Efficient Key Agreement and Signature Schemes Using Compact Representations in GF(p 10). In: Proceedings of the 2004 IEEE International Symposium on Information Theory - ISIT 2004, Chicago, p. 13 (2004)Google Scholar
  3. 3.
    Giuliani, K.J., Gong, G.: New LFSR-Based Cryptosystems and the Trace Discrete Log Problem (Trace-DLP). In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 298–312. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Gong, G., Harn, L.: Public-Key Cryptosystems Based on Cubic Finite Field Extensions. IEEE Trans. IT. 24, 2601–2605 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gries, D., Levin, D.: Computing Fibonacci Numbers (and Similarly Defined Functions) in Log Time. Information Processing Letters 11, 68–69 (1980)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Karatsuba, A., Ofman, Y.: Mulplication of Many-Digital Numbers by Automatic Computers. Physics-Daklady 7, 595–596 (1963)Google Scholar
  7. 7.
    Lenstra, A., Verheul, E.: The XTR Public Key System. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 1–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Lidl, N., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  9. 9.
    Miller, J.C.P., Spencer-Brown, D.J.: An Algorithm For Evaluation of Remote Terms in a Linear Recurrence Sequence. Computer Journal 9, 188–190 (1966/1967)MATHMathSciNetGoogle Scholar
  10. 10.
    Müller, W.B., Nöbauer, R.: Cryptanalysis of the Dickson-Scheme. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 50–61. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  11. 11.
    Niederreiter, H.: A Public-Key Cryptosystem Based on Shift Register Sequences. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 35–39. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  12. 12.
    Niederreiter, H.: Some New Cryptosystems Based on Feedback Shift Register Sequences. Math. J. Okayama Univ. 30, 121–149 (1988)MATHMathSciNetGoogle Scholar
  13. 13.
    Niederreiter, H.: Finite Fields and Cryptology. In: Finite Fields, Coding Theory, and Advances in Communications and Computing, pp. 359–373. M. Dekker, New York (1993)Google Scholar
  14. 14.
    Quoos, L., Mjølsnes, S.-F.: Public Key Systems Based on Finite Field Extensions of Degree Five. Fq7 conference (2003)Google Scholar
  15. 15.
    Shortt, J.: An Iterative Algorithm to Calculate Fibonacci Numbers in O(logn) Arithmetic Operations. Information Processing Letters 7, 299–303 (1978)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Smith, P., Skinner, C.: A Public-Key Cryptosystem and a Digital Signature System Based on the Lucas Function Analogue to Discrete Logarithms. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 357–364. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Urbanek, F.J.: An (O(logn) Algorithm for Computing the nth Element of a Solution of a Difference Equation. Information Processing Letters 11, 66–67 (1980)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ward, M.: The Algebra of Recurring Series. Annals of Math. 32, 1–9 (1931)CrossRefGoogle Scholar
  19. 19.
    Wilson, T.C., Shortt, J.: An O(logn) Algorithm for Computing General Order-k Fibonacci Numbers. Information Processing Letters 10, 68–75 (1980)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kenneth J. Giuliani
    • 1
  • Guang Gong
    • 2
  1. 1.Dept. of Mathematical and Computational SciencesUniversity of Toronto at MississaugaMississaugaCanada
  2. 2.Dept. of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations