On the Expected Value of the Joint 2-Adic Complexity of Periodic Binary Multisequences

  • Honggang Hu
  • Lei Hu
  • Dengguo Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4086)


Recently people show some interest in the word-based stream ciphers. The theory of such stream ciphers requires the study of the complexity of multisequences. The 2-adic complexity is the FCSR analog of the linear complexity, and it is very useful in the study of the security of stream ciphers. The improved version of 2-adic complexity—the symmetric 2-adic complexity was presented in 2004 which is a better measure for the cryptographic strength of binary sequences. In this paper, we derive the expected value of the joint 2-adic complexity of periodic binary multisequences. A nontrivial lower bound for the expected value of the joint symmetric 2-adic complexity of periodic binary multisequences is also given.


Binary Sequence Linear Complexity Stream Cipher Periodic Sequence Linear Feedback Shift Register 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klapper, A., Goresky, M.: 2-adic shift registers. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Goresky, M., Klapper, A.: Feedback registers based on ramified extensions of the 2-adic numbers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 215–222. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Klapper, A., Goresky, M.: Large Periods Nearly de Bruijn FCSR Sequences. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 263–273. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Klapper, A., Goresky, M.: Cryptanalysis based on 2-adic rational approximation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 262–273. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Hu, H., Feng, D.: On the 2-adic complexity and the k-error 2-adic complexity of periodic binary sequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 185–196. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptology 10, 111–147 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Rueppel, R.A.: Analysis and Design of Stream Cipher. Springer, Berlin (1986)Google Scholar
  8. 8.
    Meidl, W.: Extended Games-Chan algorithm for the 2-adic complexity of FCSR-sequences. Theoretical Computer Science, vol. 290, pp. 2045–2051 (2003)Google Scholar
  9. 9.
    Koblitz, N.: p-Adic Numbers, p-Adic Analysis, and Zeta Functions. Graduate Texts in Mathematics, vol. 58. Springer, New York (1984)Google Scholar
  10. 10.
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory in GTM, 2nd edn., vol. 84. Springer, New York (1990)Google Scholar
  11. 11.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Info. Theory IT-15, 122–127 (1969)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory 48, 2817–2825 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. Journal of Complexity 19, 61–72 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Honggang Hu
    • 1
  • Lei Hu
    • 2
  • Dengguo Feng
    • 1
  1. 1.State Key Laboratory of Information Security(Institute of Software, Chinese Academy of Sciences)BeijingChina
  2. 2.State Key Laboratory of Information Security(Graduate School of Chinese Academy of Sciences)BeijingChina

Personalised recommendations