Advertisement

Provably Correct Edgel Linking and Subpixel Boundary Reconstruction

  • Ullrich Köthe
  • Peer Stelldinger
  • Hans Meine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

Existing methods for segmentation by edgel linking are based on heuristics and give no guarantee for a topologically correct result. In this paper, we propose an edgel linking algorithm based on a new sampling theorem for shape digitization, which guarantees a topologically correct reconstruction of regions and boundaries if the edgels approximate true object edges with a known maximal error. Experiments on real and generated images demonstrate the good performance of the new method and confirm the predictions of our theory.

Keywords

Point Spread Function Delaunay Triangulation Newton Iteration Concave Side Gradient Magnitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouma, H., Vilanova, A., van Vliet, L.J., Gerritsen, F.A.: Correction for the dislocation of curved surfaces caused by the PSF in 2D and 3D CT images. IEEE Trans. Pattern Analysis and Machine Intelligence 27(9), 1501–1507 (2005)CrossRefGoogle Scholar
  2. 2.
    Braquelaire, J.-P., Brun, L.: Image segmentation with topological maps and interpixel representation. J. Visual Communication and Image Repr. 9(1), 62–79 (1998)CrossRefGoogle Scholar
  3. 3.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  4. 4.
    Haralick, R., Shapiro, L.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading (1992)Google Scholar
  5. 5.
    Latecki, L.J., Conrad, C., Gross, A.: Preserving Topology by a Digitization Process. J. Mathematical Imaging and Vision 8, 131–159 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Pavlidis, T.: Algorithms for Graphics and Image Processing. Comp. Sc. Press, Rockville (1982)Google Scholar
  7. 7.
    Rohr, K.: Localization Properties of Direct Corner Detectors. J. Mathematical Imaging and Vision 4, 139–150 (1994)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)MATHGoogle Scholar
  9. 9.
    Stelldinger, P., Kthe, U.: Towards a General Sampling Theory for Shape Preservation. Image and Vision Computing 23(2), 237–248 (2005)CrossRefGoogle Scholar
  10. 10.
    Stelldinger, P.: Digitization of Non-regular Shapes. In: Ronse, C., Najman, L., Decenciere, E. (eds.) Mathematical Morphology, ISMM (2005)Google Scholar
  11. 11.
    Stelldinger, P., Kthe, U., Meine, H.: Topologically Correct Image Segmentation using Alpha Shapes, University Hamburg, Technical Report (2006)Google Scholar
  12. 12.
    ter Haar Romeny, B.: Front-End Vision and Multi-Scale Image Analysis. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  13. 13.
    Allgower, E.L., Georg, K.: Numerical path following. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 5, pp. 3–207. North-Holland, Amsterdam (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ullrich Köthe
    • 1
  • Peer Stelldinger
    • 1
  • Hans Meine
    • 1
  1. 1.University of HamburgHamburgGermany

Personalised recommendations