Stable Wave Detector of Blobs in Images

  • Jan Dupač
  • Václav Hlaváč
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)


Stable Wave Detector (SWD) is a new multiscale landmark detector in the intensity image. SWD belongs to a group of interest-point-like operators aiming at detecting repeatedly distinguished entities regardless of their semantics. The speed and the robustness of landmark detection and the precision of landmark localization are main issues. The target landmarks are blobs which correspond to local maxima/minima of intensity (positive and negative peaks). The detector is based on the phase of the first harmonic wave in the moving window. The localization is a result of an integral transformation rather than a derivative. Thus, the blob detector is inherently robust to noise. The SWD provides subpixel localization of blobs together with the estimate of its precision, the measure of the strength/significance and the estimate of the size/scale for each blob.


Salient Region Stereo Match Visual Odometry Ideal Peak Interest Point Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. IJCV 10(2), 101–124 (1993)CrossRefGoogle Scholar
  2. 2.
    Dupač, J., Hlaváč, V.: Stable wave detector for precise and fast detection of blobs in the image. Research Report CTU–CMP–2006–03, Center for Machine Perception, K13133 FEE Czech Technical University, Prague, Czech Republic (April 2006)Google Scholar
  3. 3.
    Fraundorfer, F., Bischof, H.: Evaluation of local detectors on non-planar scenes. In: Proc. of 28th Workshop of the Austrian Association for Pattern Recognition (AGM/AAPR), Osterreichische Computer Gesellschaft 3-85403-179-3, Hagenberg, pp. 125–132 (2004)Google Scholar
  4. 4.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of 4th Alvey Vision Conference, pp. 147–151 (March 1988)Google Scholar
  5. 5.
    Kadir, T., Zisserman, A., Brady, M.: An Affine Invariant Salient Region Detector. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Loupias, E., Sebe, N.: Wavelet-Based Salient Points: Applications to Image Retrieval Using Color and Texture Features. In: Laurini, R. (ed.) VISUAL 2000. LNCS, vol. 1929, pp. 223–232. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of IEEE International Conference on Computer Vision (ICCV 1999), pp. 1150–1157. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  8. 8.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proc. of the British Machine Vision Conference, London, UK, vol. 1, pp. 384–393. BMVA (September 2002)Google Scholar
  9. 9.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant point detector. International Journal of Computer Vision 60(1), 63–86 (2004)CrossRefGoogle Scholar
  10. 10.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(7), 43–72 (2005)CrossRefGoogle Scholar
  11. 11.
    Moravec, H.P.: Towards automatic visual obstacle avoidance. In: Proc. of The 5th International Joint Conference on Artificial Intelligence. IJCAI, p. 584. MIT Press, Cambridge (1977)Google Scholar
  12. 12.
    Nistér, D., Naroditsky, O., Bergen, J.R.: Visual odometry. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004), pp. 652–659. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  13. 13.
    Pajdla, T., Hlaváč, V.: Zero Phase Representation of Panoramic Images for Image Based Localization. In: Solina, F., Leonardis, A. (eds.) CAIP 1999. LNCS, vol. 1689, pp. 550–557. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Schaffalitzky, F., Zisserman, A.: Multi-view Matching for Unordered Image Sets, or How Do I Organize My Holiday Snaps? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 414–431. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37(2), 151–172 (2000)MATHCrossRefGoogle Scholar
  16. 16.
    Tuytelaars, T., Van Gool, L.: Content-based image retrieval based on local affinely invariant regions. In: International Conference on Visual Information Systems, pp. 493–500 (1999)Google Scholar
  17. 17.
    Tuytelaars, T., Van Gool, L.: Matching widely separated views based on affine invariant regions. International Journal on Computer Vision 59(1), 61–85 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jan Dupač
    • 1
  • Václav Hlaváč
    • 2
  1. 1.RS Dynamics s.r.o.Prague 4Czech Republic
  2. 2.Faculty of Electrical Engineering, Department for Cybernetics, Center for Machine PerceptionCzech Technical UniversityPrague 2Czech Republic

Personalised recommendations