Advertisement

Robust Feature Representation for Efficient Camera Registration

  • Kevin Köser
  • Volker Härtel
  • Reinhard Koch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

This paper shows an approach for automatic learning of efficient representations for robust image features. A video sequence of a 3D scene is processed using structure-from-motion algorithms, which provides a long validated track of robust 2D features for each tracked scene region. Thus each tracked scene region defines a class of similar feature vectors forming a volume in feature space. The variance within each class results from different viewing conditions, e.g. perspective, lighting conditions, against which the feature is not invariant. We show on synthetic and on real data that making use of this class information in subspace methods, a much sparser representation can be used. Furthermore, less computational effort is needed and more correct correspondences can be retrieved for efficient computation of the pose of an unknown camera image than in previous methods.

Keywords

Augmented Reality Principle Component Analysis Descriptor Space Sift Descriptor Augmented Reality Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lepetit, V., Vacchetti, L., Thalmann, D., Fua, P.: Fully Automated and Stable Registration for Augmented Reality Applications. In: ISMAR 2003. The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, p. 93 (2003)Google Scholar
  2. 2.
    Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Transactions on PAMI, Special Issue on Face Recognition 19(7), 711–720 (1997)Google Scholar
  3. 3.
    Skrypnyk, I., Lowe, D.G.: Scene Modelling, Recognition and Tracking with Invariant Image Features. In: IEEE and ACM International Symposium on Mixed and Augmented Reality 2004, pp. 110–119 (2004)Google Scholar
  4. 4.
    Stricker, D., Kettenbach, T.: Real-time Markerless Vision-based Tracking for Outdoor Augmented Reality Applications. In: IEEE and ACM International Symposium on Augmented Reality (ISAR 2001), New York, USA, October 29-30 (2001)Google Scholar
  5. 5.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: CVPR 2004, Washington, DC, USA, vol. 1, pp. 511–517. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Beis, J.S., Lowe, D.G.: Shape Indexing Using Approximate Nearest-Neighbour Search in High-Dimensional Spaces. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR 1997), June 17-19, p. 1000 (1997)Google Scholar
  9. 9.
    Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. International Journal of Computer Vision 59(3), 207–232 (2004)CrossRefGoogle Scholar
  10. 10.
    Lepetit, V., Lagger, P., Fua, P.: Randomized Trees for Real-Time Keypoint Recognition. In: Conference on Computer Vision and Pattern Recognition, San Diego, CA (June 2005)Google Scholar
  11. 11.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, Chichester (2001)MATHGoogle Scholar
  12. 12.
    Skurichina, M.: Stabilizing weak classifiers. Ph.D. thesis, Delft University of Technology, Delft, October 15 (2001)Google Scholar
  13. 13.
    Grabner, M., Bischof, H.: Object recognition based on local feature trajectories. In: 1st Cognitive Vision Workshop, OCG Oesterreichische Computer Gesellschaft (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kevin Köser
    • 1
  • Volker Härtel
    • 1
  • Reinhard Koch
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsKielGermany

Personalised recommendations