Low-Cost Laser Range Scanner and Fast Surface Registration Approach

  • Simon Winkelbach
  • Sven Molkenstruck
  • Friedrich M. Wahl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)


In the last twenty years many approaches for contact-free measurement techniques for object surfaces and approaches for 3d object reconstruction have been proposed; but often they still require complex and expensive equipment. Not least due to the rapidly increasing number of efficient 3d hard- and software system components, alternative low-cost solutions are in great demand. We propose such a low-cost system for 3d data acquisition and fast pairwise surface registration. The only hardware requirements are a simple commercial hand-held laser and a standard grayscale camera.


Root Mean Square Laser Line Camera Image Iterative Close Point Point Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pipitone, F.J., Marshall, T.G.: A wide-field scanning triangulation rangefinder for machine vision. International Journal of Robotics Research 2(1), 39–49 (1983)CrossRefGoogle Scholar
  2. 2.
    Hall, E.L., Tio, J.B.K., MCPherson, C.A.: Measuring curved surfaces for robot vision. Computer 15(12), 42–54 (1982)CrossRefGoogle Scholar
  3. 3.
    Blais, F.: Review of 20 years range sensor development. Journal of Electronic Imaging 13(1) (2004)Google Scholar
  4. 4.
    Zagorchev, L., Goshtasby, A.: A paintbrush laser range scanner. Computer Vision and Image Understanding 101, 65–85 (2006)CrossRefGoogle Scholar
  5. 5.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Machine Intell. 14(2), 239–258 (1992)CrossRefGoogle Scholar
  6. 6.
    Krebs, B., Sieverding, P., Korn, B.: A fuzzy ICP algorithm for 3D free form object recognition. In: International Conf. on Pattern Recognition, pp. 539–543 (1996)Google Scholar
  7. 7.
    Dalley, G., Flynn, P.: Pair-wise range image registration: a study in outlier classification. Comput. Vis. Image Underst. 87(1-3), 104–115 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Chua, C.S., Jarvis, R.: Point signatures: A new representation for 3D object recognition. International Journal of Computer Vision 25(1), 63–85 (1997)CrossRefGoogle Scholar
  9. 9.
    Papaioannou, G., Theoharis, T.: Fast fragment assemblage using boundary line and surface matching. In: IEEE/CVPR Workshop on Applicat. of Computer Vision in Archaeology (1999)Google Scholar
  10. 10.
    Krebs, B., Korn, B., Wahl, F.M.: Plausibilistic preprocessing of sparse range images. In: Proc. of the 8th Int. Conf. on Image Anal. and Processing, pp. 361–366 (1995)Google Scholar
  11. 11.
    Johnson, A., Hebert, M.: Recognizing objects by matching oriented points. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 684–689 (1997)Google Scholar
  12. 12.
    Schön, N., Häusler, G.: Automatic coarse registration of 3D surfaces. In: Vision, Modeling, and Visualization 2005 (2005)Google Scholar
  13. 13.
    Barequet, G., Sharir, M.: Partial surface matching by using directed footprints. In: 12th Annual Symposium on Computational Geometry, pp. 409–410 (1996)Google Scholar
  14. 14.
    Silva, L., Bellon, O.R.P., Boyer, K.L.: Robust Range Image Registration Using Genetic Algorithms and the Surface Interpenetration Measure. Machine Perception Artificial Intelligence, vol. 60. World Scientific, Singapore (2005)MATHGoogle Scholar
  15. 15.
    Winkelbach, S., Rilk, M., Schönfelder, C., Wahl, F.M.: Fast Random Sample Matching of 3d Fragments. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 129–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Tsai, R.Y.: An efficient and accurate camera calibration technique for 3d machine vision. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 364–374 (1986)Google Scholar
  18. 18.
    Wahl, E., Hillenbrand, U., Hirzinger, G.: Surflet-pair-relation histograms: A statistical 3d-shape representation for rapid classification. In: Proc. 4th International Conf. on 3-D Digital Imaging and Modeling (3DIM 2003), pp. 474–481 (2003)Google Scholar
  19. 19.
    Weisstein, E.W.: Birthday Attack (From MathWorld–A Wolfram Web Resource),
  20. 20.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. on Math. Software 3(3), 209–226 (1977)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Simon Winkelbach
    • 1
  • Sven Molkenstruck
    • 1
  • Friedrich M. Wahl
    • 1
  1. 1.Institute for Robotics and Process ControlTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations