Advertisement

A Multiple Graph Cut Based Approach for Stereo Analysis

  • Ulas Vural
  • Yusuf Sinan Akgul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

This paper presents an optimization framework for the 3D reconstruction of the surfaces from stereo image pairs. The method is based on employing popular graph cut methods under the dual mesh optimization technique. The constructed system produces noticeably better results by running two separate optimization processes that communicate with each other. The communication mechanism makes our system more robust against local minima and it produces extra side information about the scene such as the unreliable image sections. We validated our system by running experiments on real data with ground truth and we compared our results with the other optimization methods, which showed the accuracy and effectiveness of our method.

Keywords

Mesh Element Smoothness Term Dual Mesh Stereo Image Pair Multiple Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akgul, Y., Kambhamettu, C., Stone, M.: A task-specific contour tracker for ultrasound. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (2000)Google Scholar
  2. 2.
    Akgul, Y.S., Kambhamettu, C.: Recovery and tracking of continuous 3D surfaces from stereo data using a deformable dual-mesh. In: International Conference on Computer Vision, pp. 765–772 (1999)Google Scholar
  3. 3.
    Bleyer, M., Gelautz, M.: A layered stereo matching algorithm using image segmentation and global visibility constraints. ISPRS Journal of Photogrammetry and Remote Sensing 59(3), 128–150 (2005)Google Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. In: EMMCVPR 2002, p. 359 (2002)Google Scholar
  5. 5.
    Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: IEEE Computer Vision and Pattern Recognition or CVPR, pp. 648–655 (1998)Google Scholar
  6. 6.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  7. 7.
    Freedman, D., Drineas, P.: Energy minimization via graph cuts: settling what is possible. In: IEEE Computer Vision and Pattern Recognition, pp. II:939–II:946 (2004)Google Scholar
  8. 8.
    Greig, D., Porteous, B., Seheult, A.: Exact maximum a posterori estimation for binary images. Journal Royal Statistical Society B 51(2), 271–279 (1989)Google Scholar
  9. 9.
    Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986)Google Scholar
  10. 10.
    Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1333–1336 (2003)CrossRefGoogle Scholar
  11. 11.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: International Conference on Computer Vision, pp. II:508–II:515 (2001)Google Scholar
  12. 12.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefGoogle Scholar
  14. 14.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1-3), 7–42 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ulas Vural
    • 1
  • Yusuf Sinan Akgul
    • 1
  1. 1.Department Of Computer Engineering, Gebze Institute Of TechnologyGIT Vision LabGebze, KocaeliTurkey

Personalised recommendations